Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Asymptomatic or symptomatic SARS-CoV-2 infection plus vaccination confers increased adaptive immunity to variants of concern.

  • Peifang Sun‎ et al.
  • iScience‎
  • 2022‎

The ongoing evolution of SARS-CoV-2 requires monitoring the capability of immune responses to cross-recognize Variants of Concern (VOC). In this cross-sectional study, we examined serological and cell-mediated immune memory to SARS-CoV-2 variants, including Omicron, among a cohort of 18-21-year-old Marines with a history of either asymptomatic or mild SARS-CoV-2 infection 6 to 14 months earlier. Among the 210 participants in the study, 169 were unvaccinated while 41 received 2 doses of mRNA-based COVID-19 vaccines. Vaccination of previously infected participants strongly boosted neutralizing and binding activity and memory B and T cell responses including the recognition of Omicron, compared to infected but unvaccinated participants. Additionally, no measurable differences were observed in immune memory in healthy young adults with previous symptomatic or asymptomatic infections, for ancestral or variant strains. These results provide mechanistic immunological insights into population-based differences observed in immunity against Omicron and other variants among individuals with different clinical histories.


Defining antigen targets to dissect vaccinia virus and monkeypox virus-specific T cell responses in humans.

  • Alba Grifoni‎ et al.
  • Cell host & microbe‎
  • 2022‎

The monkeypox virus (MPXV) outbreak confirmed in May 2022 in non-endemic countries is raising concern about the pandemic potential of novel orthopoxviruses. Little is known regarding MPXV immunity in the context of MPXV infection or vaccination with vaccinia-based vaccines (VACV). As with vaccinia, T cells are likely to provide an important contribution to overall immunity to MPXV. Here, we leveraged the epitope information available in the Immune Epitope Database (IEDB) on VACV to predict potential MPXV targets recognized by CD4+ and CD8+ T cell responses. We found a high degree of conservation between VACV epitopes and MPXV and defined T cell immunodominant targets. These analyses enabled the design of peptide pools able to experimentally detect VACV-specific T cell responses and MPXV cross-reactive T cells in a cohort of vaccinated individuals. Our findings will facilitate the monitoring of cellular immunity following MPXV infection and vaccination.


SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron.

  • Alison Tarke‎ et al.
  • Cell‎
  • 2022‎

We address whether T cell responses induced by different vaccine platforms (mRNA-1273, BNT162b2, Ad26.COV2.S, and NVX-CoV2373) cross-recognize early SARS-CoV-2 variants. T cell responses to early variants were preserved across vaccine platforms. By contrast, significant overall decreases were observed for memory B cells and neutralizing antibodies. In subjects ∼6 months post-vaccination, 90% (CD4+) and 87% (CD8+) of memory T cell responses were preserved against variants on average by AIM assay, and 84% (CD4+) and 85% (CD8+) preserved against Omicron. Omicron RBD memory B cell recognition was substantially reduced to 42% compared with other variants. T cell epitope repertoire analysis revealed a median of 11 and 10 spike epitopes recognized by CD4+ and CD8+ T cells, with average preservation > 80% for Omicron. Functional preservation of the majority of T cell responses may play an important role as a second-level defense against diverse variants.


Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity.

  • Carolyn Rydyznski Moderbacher‎ et al.
  • Cell‎
  • 2020‎

Limited knowledge is available on the relationship between antigen-specific immune responses and COVID-19 disease severity. We completed a combined examination of all three branches of adaptive immunity at the level of SARS-CoV-2-specific CD4+ and CD8+ T cell and neutralizing antibody responses in acute and convalescent subjects. SARS-CoV-2-specific CD4+ and CD8+ T cells were each associated with milder disease. Coordinated SARS-CoV-2-specific adaptive immune responses were associated with milder disease, suggesting roles for both CD4+ and CD8+ T cells in protective immunity in COVID-19. Notably, coordination of SARS-CoV-2 antigen-specific responses was disrupted in individuals ≥ 65 years old. Scarcity of naive T cells was also associated with aging and poor disease outcomes. A parsimonious explanation is that coordinated CD4+ T cell, CD8+ T cell, and antibody responses are protective, but uncoordinated responses frequently fail to control disease, with a connection between aging and impaired adaptive immune responses to SARS-CoV-2.


Ad26.COV2.S priming provided a solid immunological base for mRNA-based COVID-19 booster vaccination.

  • Daryl Geers‎ et al.
  • iScience‎
  • 2023‎

The emergence of novel SARS-CoV-2 variants led to the recommendation of booster vaccinations after Ad26.COV2.S priming. It was previously shown that heterologous booster vaccination induces high antibody levels, but how heterologous boosters affect other functional aspects of the immune response remained unknown. Here, we performed immunological profiling of Ad26.COV2.S-primed individuals before and after homologous or heterologous (mRNA-1273 or BNT162b2) booster. Booster vaccinations increased functional antibodies targeting ancestral SARS-CoV-2 and emerging variants. Especially heterologous booster vaccinations induced high levels of functional antibodies. In contrast, T-cell responses were similar in magnitude following homologous or heterologous booster vaccination and retained cross-reactivity towards variants. Booster vaccination led to a minimal expansion of SARS-CoV-2-specific T-cell clones and no increase in the breadth of the T-cell repertoire. In conclusion, we show that Ad26.COV2.S priming vaccination provided a solid immunological base for heterologous boosting, increasing humoral and cellular responses targeting emerging variants of concern.


Humoral and cellular immune memory to four COVID-19 vaccines.

  • Zeli Zhang‎ et al.
  • Cell‎
  • 2022‎

Multiple COVID-19 vaccines, representing diverse vaccine platforms, successfully protect against symptomatic COVID-19 cases and deaths. Head-to-head comparisons of T cell, B cell, and antibody responses to diverse vaccines in humans are likely to be informative for understanding protective immunity against COVID-19, with particular interest in immune memory. Here, SARS-CoV-2-spike-specific immune responses to Moderna mRNA-1273, Pfizer/BioNTech BNT162b2, Janssen Ad26.COV2.S, and Novavax NVX-CoV2373 were examined longitudinally for 6 months 100% of individuals made memory CD4+ T cells, with cTfh and CD4-CTL highly represented after mRNA or NVX-CoV2373 vaccination. mRNA vaccines and Ad26.COV2.S induced comparable CD8+ T cell frequencies, though only detectable in 60-67% of subjects at 6 months. A differentiating feature of Ad26.COV2.S immunization was a high frequency of CXCR3+ memory B cells. mRNA vaccinees had substantial declines in antibodies, while memory T and B cells were comparatively stable. These results may also be relevant for insights against other pathogens.


Immunological memory to common cold coronaviruses assessed longitudinally over a three-year period pre-COVID19 pandemic.

  • Esther Dawen Yu‎ et al.
  • Cell host & microbe‎
  • 2022‎

The immune memory to common cold coronaviruses (CCCs) influences SARS-CoV-2 infection outcome, and understanding its effect is crucial for pan-coronavirus vaccine development. We performed a longitudinal analysis of pre-COVID19-pandemic samples from 2016-2019 in young adults and assessed CCC-specific CD4+ T cell and antibody responses. Notably, CCC responses were commonly detected with comparable frequencies as with other common antigens and were sustained over time. CCC-specific CD4+ T cell responses were associated with low HLA-DR+CD38+ signals, and their magnitude did not correlate with yearly CCC infection prevalence. Similarly, CCC-specific and spike RBD-specific IgG responses were stable in time. Finally, high CCC-specific CD4+ T cell reactivity, but not antibody titers, was associated with pre-existing SARS-CoV-2 immunity. These results provide a valuable reference for understanding the immune response to endemic coronaviruses and suggest that steady and sustained CCC responses are likely from a stable pool of memory CD4+ T cells due to repeated earlier exposures and possibly occasional reinfections.


Profiling SARS-CoV-2 HLA-I peptidome reveals T cell epitopes from out-of-frame ORFs.

  • Shira Weingarten-Gabbay‎ et al.
  • Cell‎
  • 2021‎

T cell-mediated immunity plays an important role in controlling SARS-CoV-2 infection, but the repertoire of naturally processed and presented viral epitopes on class I human leukocyte antigen (HLA-I) remains uncharacterized. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two cell lines at different times post infection using mass spectrometry. We found HLA-I peptides derived not only from canonical open reading frames (ORFs) but also from internal out-of-frame ORFs in spike and nucleocapsid not captured by current vaccines. Some peptides from out-of-frame ORFs elicited T cell responses in a humanized mouse model and individuals with COVID-19 that exceeded responses to canonical peptides, including some of the strongest epitopes reported to date. Whole-proteome analysis of infected cells revealed that early expressed viral proteins contribute more to HLA-I presentation and immunogenicity. These biological insights, as well as the discovery of out-of-frame ORF epitopes, will facilitate selection of peptides for immune monitoring and vaccine development.


Negligible impact of SARS-CoV-2 variants on CD4 + and CD8 + T cell reactivity in COVID-19 exposed donors and vaccinees.

  • Alison Tarke‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2021‎

The emergence of SARS-CoV-2 variants highlighted the need to better understand adaptive immune responses to this virus. It is important to address whether also CD4+ and CD8+ T cell responses are affected, because of the role they play in disease resolution and modulation of COVID-19 disease severity. Here we performed a comprehensive analysis of SARS-CoV-2-specific CD4+ and CD8+ T cell responses from COVID-19 convalescent subjects recognizing the ancestral strain, compared to variant lineages B.1.1.7, B.1.351, P.1, and CAL.20C as well as recipients of the Moderna (mRNA-1273) or Pfizer/BioNTech (BNT162b2) COVID-19 vaccines. Similarly, we demonstrate that the sequences of the vast majority of SARS-CoV-2 T cell epitopes are not affected by the mutations found in the variants analyzed. Overall, the results demonstrate that CD4+ and CD8+ T cell responses in convalescent COVID-19 subjects or COVID-19 mRNA vaccinees are not substantially affected by mutations found in the SARS-CoV-2 variants.


Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals.

  • Alison Tarke‎ et al.
  • Cell reports. Medicine‎
  • 2021‎

The emergence of SARS-CoV-2 variants with evidence of antibody escape highlight the importance of addressing whether the total CD4+ and CD8+ T cell recognition is also affected. Here, we compare SARS-CoV-2-specific CD4+ and CD8+ T cells against the B.1.1.7, B.1.351, P.1, and CAL.20C lineages in COVID-19 convalescents and in recipients of the Moderna (mRNA-1273) or Pfizer/BioNTech (BNT162b2) COVID-19 vaccines. The total reactivity against SARS-CoV-2 variants is similar in terms of magnitude and frequency of response, with decreases in the 10%-22% range observed in some assay/VOC combinations. A total of 7% and 3% of previously identified CD4+ and CD8+ T cell epitopes, respectively, are affected by mutations in the various VOCs. Thus, the SARS-CoV-2 variants analyzed here do not significantly disrupt the total SARS-CoV-2 T cell reactivity; however, the decreases observed highlight the importance for active monitoring of T cell reactivity in the context of SARS-CoV-2 evolution.


Targets and cross-reactivity of human T cell recognition of Common Cold Coronaviruses.

  • Alison Tarke‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The Coronavirus (CoV) family includes a variety of viruses able to infect humans. Endemic CoVs that can cause common cold belong to the alphaCoV and betaCoV genera, with the betaCoV genus also containing subgenera with zoonotic and pandemic concern, including sarbecoCoV (SARS-CoV and SARS-CoV-2) and merbecoCoV (MERS-CoV). It is therefore warranted to explore pan-CoV vaccine concepts, to provide adaptive immune protection against new potential CoV outbreaks, particularly in the context of betaCoV sub lineages. To explore the feasibility of eliciting CD4 + T cell responses widely cross-recognizing different CoVs, we utilized samples collected pre-pandemic to systematically analyze T cell reactivity against representative alpha (NL63) and beta (OC43) common cold CoVs (CCC). Similar to previous findings on SARS-CoV-2, the S, N, M, and nsp3 antigens were immunodominant for both viruses while nsp2 and nsp12 were immunodominant for NL63 and OC43, respectively. We next performed a comprehensive T cell epitope screen, identifying 78 OC43 and 87 NL63-specific epitopes. For a selected subset of 18 epitopes, we experimentally assessed the T cell capability to cross-recognize sequences from representative viruses belonging to alphaCoV, sarbecoCoV, and beta-non-sarbecoCoV groups. We found general conservation within the alpha and beta groups, with cross-reactivity experimentally detected in 89% of the instances associated with sequence conservation of >67%. However, despite sequence conservation, limited cross-reactivity was observed in the case of sarbecoCoV (50% of instances), indicating that previous CoV exposure to viruses phylogenetically closer to this subgenera is a contributing factor in determining cross-reactivity. Overall, these results provided critical insights in the development of future pan-CoV vaccines.


Targets and cross-reactivity of human T cell recognition of common cold coronaviruses.

  • Alison Tarke‎ et al.
  • Cell reports. Medicine‎
  • 2023‎

The coronavirus (CoV) family includes several viruses infecting humans, highlighting the importance of exploring pan-CoV vaccine strategies to provide broad adaptive immune protection. We analyze T cell reactivity against representative Alpha (NL63) and Beta (OC43) common cold CoVs (CCCs) in pre-pandemic samples. S, N, M, and nsp3 antigens are immunodominant, as shown for severe acute respiratory syndrome 2 (SARS2), while nsp2 and nsp12 are Alpha or Beta specific. We further identify 78 OC43- and 87 NL63-specific epitopes, and, for a subset of those, we assess the T cell capability to cross-recognize sequences from representative viruses belonging to AlphaCoV, sarbecoCoV, and Beta-non-sarbecoCoV groups. We find T cell cross-reactivity within the Alpha and Beta groups, in 89% of the instances associated with sequence conservation >67%. However, despite conservation, limited cross-reactivity is observed for sarbecoCoV, indicating that previous CoV exposure is a contributing factor in determining cross-reactivity. Overall, these results provide critical insights in developing future pan-CoV vaccines.


Germinal center responses to SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals.

  • Katlyn Lederer‎ et al.
  • Cell‎
  • 2022‎

Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. Herein, through a fine-needle aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant recipients (KTXs). We found that, unlike healthy subjects, KTXs presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cell, SARS-CoV-2 receptor binding domain-specific memory B cell, and neutralizing antibody responses. KTXs also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals and suggest a GC origin for certain humoral and memory B cell responses following mRNA vaccination.


Prior infection with SARS-CoV-2 boosts and broadens Ad26.COV2.S immunogenicity in a variant-dependent manner.

  • Roanne Keeton‎ et al.
  • Cell host & microbe‎
  • 2021‎

The Johnson and Johnson Ad26.COV2.S single-dose vaccine represents an attractive option for coronavirus disease 2019 (COVID-19) vaccination in countries with limited resources. We examined the effect of prior infection with different SARS-CoV-2 variants on Ad26.COV2.S immunogenicity. We compared participants who were SARS-CoV-2 naive with those either infected with the ancestral D614G virus or infected in the second wave when Beta predominated. Prior infection significantly boosts spike-binding antibodies, antibody-dependent cellular cytotoxicity, and neutralizing antibodies against D614G, Beta, and Delta; however, neutralization cross-reactivity varied by wave. Robust CD4 and CD8 T cell responses are induced after vaccination, regardless of prior infection. T cell recognition of variants is largely preserved, apart from some reduction in CD8 recognition of Delta. Thus, Ad26.COV2.S vaccination after infection could result in enhanced protection against COVID-19. The impact of the infecting variant on neutralization breadth after vaccination has implications for the design of second-generation vaccines based on variants of concern.


Impact of SARS-CoV-2 exposure history on the T cell and IgG response.

  • Roanne Keeton‎ et al.
  • Cell reports. Medicine‎
  • 2023‎

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposures, from infection or vaccination, can potently boost spike antibody responses. Less is known about the impact of repeated exposures on T cell responses. Here, we compare the prevalence and frequency of peripheral SARS-CoV-2-specific T cell and immunoglobulin G (IgG) responses in 190 individuals with complex SARS-CoV-2 exposure histories. As expected, an increasing number of SARS-CoV-2 spike exposures significantly enhances the magnitude of IgG responses, while repeated exposures improve the number of T cell responders but have less impact on SARS-CoV-2 spike-specific T cell frequencies in the circulation. Moreover, we find that the number and nature of exposures (rather than the order of infection and vaccination) shape the spike immune response, with spike-specific CD4 T cells displaying a greater polyfunctional potential following hybrid immunity compared with vaccination only. Characterizing adaptive immunity from an evolving viral and immunological landscape may inform vaccine strategies to elicit optimal immunity as the pandemic progress.


Immunodeficiency syndromes differentially impact the functional profile of SARS-CoV-2-specific T cells elicited by mRNA vaccination.

  • Yu Gao‎ et al.
  • Immunity‎
  • 2022‎

Many immunocompromised patients mount suboptimal humoral immunity after SARS-CoV-2 mRNA vaccination. Here, we assessed the single-cell profile of SARS-CoV-2-specific T cells post-mRNA vaccination in healthy individuals and patients with various forms of immunodeficiencies. Impaired vaccine-induced cell-mediated immunity was observed in many immunocompromised patients, particularly in solid-organ transplant and chronic lymphocytic leukemia patients. Notably, individuals with an inherited lack of mature B cells, i.e., X-linked agammaglobulinemia (XLA) displayed highly functional spike-specific T cell responses. Single-cell RNA-sequencing further revealed that mRNA vaccination induced a broad functional spectrum of spike-specific CD4+ and CD8+ T cells in healthy individuals and patients with XLA. These responses were founded on polyclonal repertoires of CD4+ T cells and robust expansions of oligoclonal effector-memory CD45RA+ CD8+ T cells with stem-like characteristics. Collectively, our data provide the functional continuum of SARS-CoV-2-specific T cell responses post-mRNA vaccination, highlighting that cell-mediated immunity is of variable functional quality across immunodeficiency syndromes.


Differences in the immune response elicited by two immunization schedules with an inactivated SARS-CoV-2 vaccine in a randomized phase 3 clinical trial.

  • Nicolás M S Gálvez‎ et al.
  • eLife‎
  • 2022‎

The development of vaccines to control the coronavirus disease 2019 (COVID-19) pandemic progression is a worldwide priority. CoronaVac is an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine approved for emergency use with robust efficacy and immunogenicity data reported in trials in China, Brazil, Indonesia, Turkey, and Chile.


SARS-CoV-2 Omicron variant escapes neutralizing antibodies and T cell responses more efficiently than other variants in mild COVID-19 convalescents.

  • Pablo Garcia-Valtanen‎ et al.
  • Cell reports. Medicine‎
  • 2022‎

Coronavirus disease 2019 (COVID-19) convalescents living in regions with low vaccination rates rely on post-infection immunity for protection against re-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluate humoral and T cell immunity against five variants of concern (VOCs) in mild-COVID-19 convalescents at 12 months after infection with ancestral virus. In this cohort, ancestral, receptor-binding domain (RBD)-specific antibody and circulating memory B cell levels are conserved in most individuals, and yet serum neutralization against live B.1.1.529 (Omicron) is completely abrogated and significantly reduced for other VOCs. Likewise, ancestral SARS-CoV-2-specific memory T cell frequencies are maintained in >50% of convalescents, but the cytokine response in these cells to mutated spike epitopes corresponding to B.1.1.529 and B.1.351 (Beta) VOCs were impaired. These results indicate that increased antigen variability in VOCs impairs humoral and spike-specific T cell immunity post-infection, strongly suggesting that COVID-19 convalescents are vulnerable and at risk of re-infection with VOCs, thus stressing the importance of vaccination programs.


Development of a T cell-based immunodiagnostic system to effectively distinguish SARS-CoV-2 infection and COVID-19 vaccination status.

  • Esther Dawen Yu‎ et al.
  • Cell host & microbe‎
  • 2022‎

Both SARS-CoV-2 infections and COVID-19 vaccines elicit memory T cell responses. Here, we report the development of 2 pools of experimentally defined SARS-CoV-2 T cell epitopes that, in combination with spike, were used to discriminate 4 groups of subjects with different SARS-CoV-2 infection and COVID-19 vaccine status. The overall T cell-based classification accuracy was 89.2% and 88.5% in the experimental and validation cohorts. This scheme was applicable to different mRNA vaccines and different lengths of time post infection/post vaccination and yielded increased accuracy when compared to serological readouts. T cell responses from breakthrough infections were also studied and effectively segregated from vaccine responses, with a combined performance of 86.6% across all 239 subjects from the 5 groups. We anticipate that a T cell-based immunodiagnostic scheme to classify subjects based on their vaccination and natural infection history will be an important tool for longitudinal monitoring of vaccinations and for establishing SARS-CoV-2 correlates of protection.


Heterogeneity of human anti-viral immunity shaped by virus, tissue, age, and sex.

  • Maya M L Poon‎ et al.
  • Cell reports‎
  • 2021‎

The persistence of anti-viral immunity is essential for protection and exhibits profound heterogeneity across individuals. Here, we elucidate the factors that shape maintenance and function of anti-viral T cell immunity in the body by comprehensive profiling of virus-specific T cells across blood, lymphoid organs, and mucosal tissues of organ donors. We use flow cytometry, T cell receptor sequencing, single-cell transcriptomics, and cytokine analysis to profile virus-specific CD8+ T cells recognizing the ubiquitous pathogens influenza and cytomegalovirus. Our results reveal that virus specificity determines overall magnitude, tissue distribution, differentiation, and clonal repertoire of virus-specific T cells. Age and sex influence T cell differentiation and dissemination in tissues, while T cell tissue residence and functionality are highly correlated with the site. Together, our results demonstrate how the covariates of virus, tissue, age, and sex impact the anti-viral immune response, which is important for targeting, monitoring, and predicting immune responses to existing and emerging viruses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: