2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 36 papers

Intensity-dependent effect of treadmill running on knee articular cartilage in a rat model.

  • Guo-Xin Ni‎ et al.
  • BioMed research international‎
  • 2013‎

To understand the changes of femoral cartilage in response to treadmill running with different intensities in the hope of differentiating "moderate" and "strenuous" running in a rat model.


pNNS-Conjugated Chitosan Mediated IGF-1 and miR-140 Overexpression in Articular Chondrocytes Improves Cartilage Repair.

  • Rong-Lan Zhao‎ et al.
  • BioMed research international‎
  • 2019‎

The aim of the present study was to investigate the effects of phosphorylatable nucleus localization signal linked nucleic kinase substrate short peptide (pNNS)-conjugated chitosan (pNNS-CS) mediated miR-140 and IGF-1 in both rabbit chondrocytes and cartilage defects model. pNNS-CS was combined with pBudCE4.1-IGF-1, pBudCE4.1-miR-140, and negative control pBudCE4.1 to form pDNA/pNNS-CS complexes. Then these complexes were transfected into chondrocytes or injected intra-articularly into the knee joints. High levels of IGF-1 and miR-140 expression were detected both in vitro and in vivo. Compared with pBudCE4.1 group, in vitro, the transgenic groups significantly promoted chondrocyte proliferation, increased glycosaminoglycan (GAG) synthesis, and ACAN, COL2A1, and TIMP-1 levels, and reduced the levels of nitric oxide (NO), MMP-13, and ADAMTS-5. In vivo, the exogenous genes enhanced COL2A1, ACAN, and TIMP-1 expression in cartilage and reduced cartilage Mankin score and the contents of NO, IL-1β, TNF-α, and GAG contents in synovial fluid of rabbits, MMP-13, ADAMTS-5, COL1A2, and COL10A1 levels in cartilage. Double gene combination showed better results than single gene. This study indicate that pNNS-CS is a better gene delivery vehicle in gene therapy for cartilage defects and that miR-140 combination IGF-1 transfection has better biologic effects on cartilage defects.


Multiparametric MRI and Computational Modelling in the Assessment of Human Articular Cartilage Properties: A Comprehensive Approach.

  • J Thüring‎ et al.
  • BioMed research international‎
  • 2018‎

Quantitative magnetic resonance imaging (qMRI) is a promising approach to detect early cartilage degeneration. However, there is no consensus on which cartilage component contributes to the tissue's qMRI signal properties. T1, T1ρ, and T2⁎ maps of cartilage samples (n = 8) were generated on a clinical 3.0-T MRI system. All samples underwent histological assessment to ensure structural integrity. For cross-referencing, a discretized numerical model capturing distinct compositional and structural tissue properties, that is, fluid fraction (FF), proteoglycan (PG) and collagen (CO) content and collagen fiber orientation (CFO), was implemented. In a pixel-wise and region-specific manner (central versus peripheral region), qMRI parameter values and modelled tissue parameters were correlated and quantified in terms of Spearman's correlation coefficient ρs. Significant correlations were found between modelled compositional parameters and T1 and T2⁎, in particular in the central region (T1: ρs ≥ 0.7 [FF, CFO], ρs ≤ -0.8 [CO, PG]; T2⁎: ρs ≥ 0.67 [FF, CFO], ρs ≤ -0.71 [CO, PG]). For T1ρ, correlations were considerably weaker and fewer (0.16 ≤ ρs ≤ -0.15). QMRI parameters are characterized in their biophysical properties and their sensitivity and specificity profiles in a basic scientific context. Although none of these is specific towards any particular cartilage constituent, T1 and T2⁎ reflect actual tissue compositional features more closely than T1ρ.


Matrilin-2 is a widely distributed extracellular matrix protein and a potential biomarker in the early stage of osteoarthritis in articular cartilage.

  • Shukun Zhang‎ et al.
  • BioMed research international‎
  • 2014‎

In this study, we first generated and characterized a polyclonal antibody against unique domain of matrlin-2 and then used this specific antibody to assess the expression pattern of matrilin-2 by immunohistochemistry. We found that marilin-2 is widely distributed in the connective tissues of many mouse tissues including heart, colon, penis, esophagus, lung, kidney, tracheal cartilage, developmental bone, and adult bone. The expression level of matrilin-2 was remarkably increased in the tissues of osteoarthritis developmental articular cartilage, compared to normal healthy tissues. Furthermore, we determined matrilin-2 expression in specific epithelial cells in stomach and ductal epithelial cells of salivary gland. In other tissues, the positive signals were mainly located around cardiac muscle cells and Purkinje fibers in the heart; corpus spongiosum in the penis; submucosa in the colon and esophagus; extracellular matrix of cartilage in the tracheal cartilage; and, glomerulus, the basement membrane of distal convoluted tubule and renal matrix in kidney. These observations indicated that the distribution pattern of matrilin-2 is heterogeneous in each tissue. Matrilin-2 may play an important role in the communication of matrix to matrix and matrix to cells and will be used as a potential biomarker in the early stage of osteoarthritis of articular cartilage.


Tailored PVA/ECM scaffolds for cartilage regeneration.

  • Elena Stocco‎ et al.
  • BioMed research international‎
  • 2014‎

Articular cartilage lesions are a particular challenge for regenerative medicine due to cartilage low self-ability repair in case of damage. Hence, a significant goal of musculoskeletal tissue engineering is the development of suitable structures in virtue of their matrix composition and biomechanical properties. The objective of our study was to design in vitro a supporting structure for autologous chondrocyte growth. We realized a biohybrid composite scaffold combining a novel and nonspecific extracellular matrix (ECM), which is decellularized Wharton's jelly ECM, with the biomechanical properties of the synthetic hydrogel polyvinyl alcohol (PVA). Wharton's jelly ECM was tested for its ability in promoting scaffold colonization by chondrocytes and compared with polyvinyl alcohol itself and the more specific decellularized cartilage matrix. Our preliminary evidences highlighted the chance of using Wharton's jelly ECM in combination with PVA hydrogels as an innovative and easily available scaffold for cartilage restoration.


Gene modification of mesenchymal stem cells and articular chondrocytes to enhance chondrogenesis.

  • Saliya Gurusinghe‎ et al.
  • BioMed research international‎
  • 2014‎

Current cell based treatment for articular cartilage and osteochondral defects are hampered by issues such as cellular dedifferentiation and hypertrophy of the resident or transplanted cells. The reduced expression of chondrogenic signalling molecules and transcription factors is a major contributing factor to changes in cell phenotype. Gene modification of chondrocytes may be one approach to redirect cells to their primary phenotype and recent advances in nonviral and viral gene delivery technologies have enabled the expression of these lost factors at high efficiency and specificity to regain chondrocyte function. This review focuses on the various candidate genes that encode signalling molecules and transcription factors that are specific for the enhancement of the chondrogenic phenotype and also how epigenetic regulators of chondrogenesis in the form of microRNA may also play an important role.


MicroRNA-29b Contributes to Collagens Imbalance in Human Osteoarthritic and Dedifferentiated Articular Chondrocytes.

  • David Moulin‎ et al.
  • BioMed research international‎
  • 2017‎

Decreased expression of collagen type II in favour of collagen type I or X is one hallmark of chondrocyte phenotype changes in osteoarthritic (OA) cartilage. MicroRNA- (miR-) 29b was previously shown to target collagens in several tissues. We studied whether it could contribute to collagen imbalance in chondrocytes with an impaired phenotype.


Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques.

  • Ashvin K Dewan‎ et al.
  • BioMed research international‎
  • 2014‎

Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques.


PEDF Is Associated with the Termination of Chondrocyte Phenotype and Catabolism of Cartilage Tissue.

  • P Klinger‎ et al.
  • BioMed research international‎
  • 2017‎

Objective. To investigate the expression and target genes of pigment epithelium-derived factor (PEDF) in cartilage and chondrocytes, respectively. Methods. We analyzed the expression pattern of PEDF in different human cartilaginous tissues including articular cartilage, osteophytic cartilage, and fetal epiphyseal and growth plate cartilage, by immunohistochemistry and quantitative real-time (qRT) PCR. Transcriptome analysis after stimulation of human articular chondrocytes with rhPEDF was performed by RNA sequencing (RNA-Seq) and confirmed by qRT-PCR. Results. Immunohistochemically, PEDF could be detected in transient cartilaginous tissue that is prone to undergo endochondral ossification, including epiphyseal cartilage, growth plate cartilage, and osteophytic cartilage. In contrast, PEDF was hardly detected in healthy articular cartilage and in the superficial zone of epiphyses, regions that are characterized by a permanent stable chondrocyte phenotype. RNA-Seq analysis and qRT-PCR demonstrated that rhPEDF significantly induced the expression of a number of matrix-degrading factors including SAA1, MMP1, MMP3, and MMP13. Simultaneously, a number of cartilage-specific genes including COL2A1, COL9A2, COMP, and LECT were among the most significantly downregulated genes. Conclusions. PEDF represents a marker for transient cartilage during all neonatal and postnatal developmental stages and promotes the termination of cartilage tissue by upregulation of matrix-degrading factors and downregulation of cartilage-specific genes. These data provide the basis for novel strategies to stabilize the phenotype of articular cartilage and prevent its degradation.


3D High-Frequency Ultrasound Imaging of Cartilage-Bone Interface Compared with Micro-CT.

  • Yanping Huang‎ et al.
  • BioMed research international‎
  • 2020‎

Cartilage-bone interface (CBI) is a complex structure which bears important information in pathophysiology of osteoarthritis (OA). While high-frequency ultrasound (US) has been widely used for the investigation of articular cartilage, 3D imaging of CBI using US is less commonly reported in this field. Here, we adopted a 3D high-frequency ultrasound imaging approach specifically for the investigation of CBI in human knee samples. Fifteen osteochondral disks from the tibial plateau of seven OA patients were prepared in vitro and scanned using both high-frequency US and micro-CT imaging. The 3D morphology of the tidemark was reconstructed and compared using an image registration approach between the two imaging modalities. Results showed that the 3D tidemark could be well registered between the two imaging methods with a mean surface discrepancy of 33.2 ± 9.9 μm. Quantitative surface waviness/roughness parameter analysis showed significant correlations between the two imaging modalities. An intensity projected en face imaging was proposed to probe characteristic details of the CBI such as its perforations. This study provided evidence for the 3D high-frequency ultrasound as a nonionizing radiation imaging tool potentially useful to evaluate the change of CBI in basic research of join diseases including OA.


Early Detection of Tibial Cartilage Degradation and Cancellous Bone Loss in an Ovariectomized Rat Model.

  • Yinong Wang‎ et al.
  • BioMed research international‎
  • 2017‎

This study aimed to investigate degradation of the articular cartilage and loss of the cancellous bone in an ovariectomized (OVX) rat model simulating early human menopausal stage. Fourteen health female Sprague-Dawley rats were randomly divided into two groups (n = 7 per group): an OVX group that underwent bilateral ovariectomy to create an OVX model with low estrogen levels and a sham group in which only the periovarian fatty tissue was exteriorized. All the animals were sacrificed at 3 weeks after ovariectomy. The left tibiae were harvested. The articular cartilage at medial tibial plateau (MTP) and lateral tibial plateau (LTP) was assessed with quantitative high-frequency ultrasound. The cancellous bone was evaluated with micro-CT. The results indicated that, in comparison with the sham rats, the OVX rats exhibited significant alterations in acoustic parameters of the articular cartilage but insignificant changes in microarchitectural parameters of the cancellous bone in early stage of low estrogen levels. The results of this study suggest that cartilage degradation induced by estrogen reduction was detected earlier with quantitative ultrasound than that of the cancellous bone loss in 3 wk OVX rats.


The Effects of Age and Cell Isolation on Collagen II Synthesis by Articular Chondrocytes: Evidence for Transcriptional and Posttranscriptional Regulation.

  • Vipin Asopa‎ et al.
  • BioMed research international‎
  • 2020‎

Adult articular cartilage synthesises very little type II collagen in comparison to young cartilage. The age-related difference in collagen II synthesis is poorly understood. This is the first systematic investigation of age-related differences in extracellular matrix synthesis in fresh articular cartilage and following isolation of chondrocytes. A histological comparison of 3-year-old skeletally mature and 6-month-old juvenile porcine cartilage was made. Differences in collagen II, aggrecan, and Sox5, 6, and 9 mRNA and protein expression and mRNA stability were measured. Adult cartilage was found to be thinner than juvenile cartilage but with similar chondrocyte density. Procollagen α1(II) and Sox9 mRNA levels were 10-fold and 3-fold reduced in adult cartilage. Sox9 protein was halved and collagen II protein synthesis was almost undetectable and calculated to be at least 30-fold reduced. Aggrecan expression did not differ. Isolation of chondrocytes caused a drop in procollagen α1(II) and Sox9 mRNA in both adult and juvenile cells along with a marked reduction in Sox9 mRNA stability. Interestingly, juvenile chondrocytes continued to synthesise collagen II protein with mRNA levels similar to those seen in adult articular cartilage. Age-related differences in collagen II protein synthesis are due to both transcriptional and posttranscription regulation. A better understanding of these regulatory mechanisms would be an important step in improving current cartilage regeneration techniques.


Fabrication and In Vitro Study of Tissue-Engineered Cartilage Scaffold Derived from Wharton's Jelly Extracellular Matrix.

  • Tongguang Xiao‎ et al.
  • BioMed research international‎
  • 2017‎

The scaffold is a key element in cartilage tissue engineering. The components of Wharton's jelly are similar to those of articular cartilage and it also contains some chondrogenic growth factors, such as insulin-like growth factor I and transforming growth factor-β. We fabricated a tissue-engineered cartilage scaffold derived from Wharton's jelly extracellular matrix (WJECM) and compared it with a scaffold derived from articular cartilage ECM (ACECM) using freeze-drying. The results demonstrated that both WJECM and ACECM scaffolds possessed favorable pore sizes and porosities; moreover, they showed good water uptake ratios and compressive moduli. Histological staining confirmed that the WJECM and ACECM scaffolds contained similar ECM. Moreover, both scaffolds showed good cellular adherence, bioactivity, and biocompatibility. MTT and DNA content assessments confirmed that the ACECM scaffold tended to be more beneficial for improving cell proliferation than the WJECM scaffold. However, RT-qPCR results demonstrated that the WJECM scaffold was more favorable to enhance cellular chondrogenesis than the ACECM scaffold, showing more collagen II and aggrecan mRNA expression. These results were confirmed indirectly by glycosaminoglycan and collagen content assessments and partially confirmed by histology and immunofluorescent staining. In conclusion, these results suggest that a WJECM scaffold may be favorable for future cartilage tissue engineering.


Transplantation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Improves Cartilage Repair in a Rabbit Model.

  • Guihua Yang‎ et al.
  • BioMed research international‎
  • 2021‎

The aim of this study was to investigate the therapeutic efficacy and safety of transplanting human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in the treatment of cartilage injury. First, the articular cartilage defect model in rabbits was constructed. Then, the identified hUCB-MSCs and rabbit bone marrow stem cells (rBM-MSCs) were transplanted into the bone defect, respectively, and the cartilage repair effect was observed by hematoxylin-eosin (HE) staining and immunohistochemistry. Besides, the glycosaminoglycan (GAG) content and biomechanics of the restoration area were also evaluated. In our study, hUCB-MSCs and rBM-MSCs exhibited typical MSC characteristics, with positive expressions of CD73, CD105, and CD90 and negative for CD45, CD34, CD14, and HLA-DR. After the transplantation of hUCB-MSCs and rBM-MSCs, the overall quality of cartilage tissue was significantly improved, and the recipients did not show significant side effects in general. However, the expression of matrix metalloproteinase-13 (MMP-13) in the de novo tissues of the hUCB-MSCs and rBM-MSCs groups was both increased, indicating that the novel tissues may have some potential osteoarthritic changes. In conclusion, our results suggest the therapeutic effect of hUCB-MSCs transplantation in cartilage regeneration, providing a promising future in the clinical treatment of cartilage injury.


Seahorse Protein Hydrolysate Ameliorates Proinflammatory Mediators and Cartilage Degradation on Posttraumatic Osteoarthritis with an Obesity Rat Model.

  • Sabri Sudirman‎ et al.
  • BioMed research international‎
  • 2022‎

Osteoarthritis (OA) is one of the age-related diseases and is highly present on the knees. Obesity and mechanical injuries as a risk factor of OA are attributed to cartilage disintegration, joint loading, and inflammation. This study is aimed at investigating the effects of seahorse protein hydrolysate (SH) on posttraumatic osteoarthritis in an obesity rat. The OA model was developed by anterior cruciate ligament transection with medial meniscectomy in a high-fat diet- (HFD-) induced obesity rat model. The male Sprague-Dawley rats were fed a HFD for 6 weeks before OA surgery. The OA rats were treated with oral gavage by 4, 8, or 20 mg/kg of body weight of SH for 6 weeks of treatment. The expressions of plasma proinflammatory factors, C-telopeptide of type II collagen, and matrix metalloproteinase- (MMP-) 3 and MMP-13 were reduced by SH treatment. Plasma superoxide dismutase and glutathione peroxidase activities were enhanced by SH. SH also relieved the pain of the knee joint and swelling as well as decreased proteoglycan loss in the knee articular cartilage caused by osteoarthritis. Based on these results, SH suppressed proinflammatory factors and attenuated cartilage degradation and pain in the OA model. Therefore, seahorse protein hydrolysate might be a potential opportunity for improving the development of osteoarthritis.


Intermittent Hydrostatic Pressure Promotes Cartilage Repair in an Inflammatory Environment through Hippo-YAP Signaling In Vitro and In Vivo.

  • Wangxiang Yao‎ et al.
  • BioMed research international‎
  • 2022‎

The study of chondrogenic progenitor cells (CPCs) as seed cells has become a new focus of cartilage regeneration. The inflammatory environment of osteoarthritis (OA) inhibits the repair ability of CPCs. But the OA patients' CPCs showed an excellent regeneration ability with intermittent hydrostatic pressure (IHP). However, the mechanism is unclear. We compared the expression of the Hippo signaling effect factor YAP between OA and normal cartilages. Then, the relationship between the Kellgren-Lawrence (K-L) score of OA and the rate of YAP-positive cells was analyzed. The changes of CPCs after IHP and IL-1β applications were observed. The OA model was established by cutting the anterior cruciate ligament of rats. The knee joint of the OA rats was distracted by hinged external fixator to create suitable IHP, named as the IHP group. The IHP group plus intra-articular injection of Verteporfin (VP) was named as the IHP+VP group, and the untreated rat group was named as the CON group. Four and 8 weeks after the operation, the reparative effect was evaluated by MASSON staining and immunohistochemical staining. Lower levels of YAP1 and higher expressions of p-YAP1 were found in the OA group as compared to the normal group. IHP inhibited the Hippo signaling in an inflammatory environment and promoted the proliferation of CPCs. The cartilage deterioration in the CON group progressed more significantly than that in the IHP+VP group. The best reparative effect was observed in the IHP group with increased expression of YAP1 and decreased p-YAP1. These results hint that mechanical stress can activate CPCs and promote cartilage repair in an inflammatory environment through inhibiting Hippo signaling.


Cell-to-Cell Culture Inhibits Dedifferentiation of Chondrocytes and Induces Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells.

  • Xingfu Li‎ et al.
  • BioMed research international‎
  • 2019‎

Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) possess great promise as a therapeutic to repair damaged cartilage. Direct intra-articular injection of mesenchymal stem cells has been shown to reduce cartilage damage and is advantageous as surgical implantation and associated side effects can be avoided using this approach. However, the efficacy of stem cell-based therapy for cartilage repair depends highly on the direct interactions of these stem cells with chondrocytes in the joint. In this study, we have carried out an in vitro cell-to-cell contact coculture study with human articular chondrocytes (hACs) and hUC-MSCs, with the goal of this study being to evaluate interactions between hACs and hUC-MSCs.


The Role of Wnt Pathway in the Pathogenesis of OA and Its Potential Therapeutic Implications in the Field of Regenerative Medicine.

  • Maria De Santis‎ et al.
  • BioMed research international‎
  • 2018‎

Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation, subchondral damage, and bone remodelling, affecting most commonly weight-bearing joints, such as the knee and hip. The loss of cartilage leads to joint space narrowing, pain, and loss of function which could ultimately require total joint replacement. The Wnt/β catenin pathway is involved in the pathophysiology of OA and has been proposed as a therapeutic target. Endogenous and pharmacological inhibitors of this pathway were recently investigated within innovative therapies including the use of platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs).


Development and retranslational validation of an in vitro model to characterize acute infections in large human joints.

  • Ingo H Pilz‎ et al.
  • BioMed research international‎
  • 2014‎

Bacterial infections can destroy cartilage integrity, resulting in osteoarthritis. Goal was to develop an in vitro model with in vivo validation of acute joint inflammation. Inflammation in cocultivated human synovial fibroblasts (SFB), chondrocytes (CHDR), and mononuclear cells (MNC) was successively relieved for 10 days. Articular effusions from patients with (n = 7) and without (n = 5) postoperative joint infection in healthy patients (ASA 1-2) were used as model validation. Inflammation in vitro resulted in an enormous increase in IL-1 and a successive reduction in SFB numbers. CHDR however, maintained metabolic activity and proteoglycan synthesis. While concentrations of bFGF in vivo and in vitro rose consistently, the mRNA increase was only moderate. Concurring with our in vivo data, cartilage-specific IGF-1 steadily increased, while IGF-1 mRNA in the CHDR and SFB did not correlate with protein levels. Similarly, aggrecan (ACAN) protein concentrations increased in vivo and failed to correlate in vitro with gene expression in either the CHDR or the SFB, indicating extracellular matrix breakdown. Anabolic cartilage-specific BMP-7 with highly significant intra-articular levels was significantly elevated in vitro on day 10 following maximum inflammation. Our in vitro model enables us to validate early inflammation of in vivo cell- and cytokine-specific regulatory patterns. This trial is registered with MISSinG, DRKS 00003536.


MicroRNA-210-3p Promotes Chondrogenic Differentiation and Inhibits Adipogenic Differentiation Correlated with HIF-3α Signalling in Bone Marrow Mesenchymal Stem Cells.

  • Meng Yang‎ et al.
  • BioMed research international‎
  • 2021‎

Cartilage injury of the knee joint is very common. Due to the limited self-healing ability of articular cartilage, osteoarthritis is very likely to occur if left untreated. Bone marrow mesenchymal stem cells (BMMSCs) are widely used in the study of cartilage injury due to their low immunity and good amplification ability, but they still have disadvantages, such as heterogeneous undifferentiated cells. MicroRNAs can regulate the chondrogenic differentiation ability of MSCs by inhibiting or promoting mRNA translation and degradation. In this research, we primarily investigated the effect of microRNA-210-3p (miR-210-3p) on chondrogenic and adipogenic differentiation of BMMSCs in vitro. Our results demonstrate that miR-210-3p promoted chondrogenic differentiation and inhibited adipogenic differentiation of rat BMMSCs, which was related to the HIF-3α signalling pathway. Additionally, miR-210-3p promotes mRNA and protein levels of the chondrogenic expression genes COLII and SOX9 and inhibits mRNA and protein levels of the adipogenic expression genes PPARγ and LPL. Thus, miR-210-3p combined with BMMSCs is a candidate for future clinical applications in cartilage regeneration and could represent a promising new therapeutic target for OA.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: