2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism.

  • Nils G Løvsletten‎ et al.
  • Scientific reports‎
  • 2020‎

Diacylglycerol acyltransferases (DGAT) 1 and 2 catalyse the final step in triacylglycerol (TAG) synthesis, the esterification of fatty acyl-CoA to diacylglycerol. Despite catalysing the same reaction and being present in the same cell types, they exhibit different functions on lipid metabolism in various tissues. Yet, their roles in skeletal muscle remain poorly defined. In this study, we investigated how selective inhibitors of DGAT1 and DGAT2 affected lipid metabolism in human primary skeletal muscle cells. The results showed that DGAT1 was dominant in human skeletal muscle cells utilizing fatty acids (FAs) derived from various sources, both exogenously supplied FA, de novo synthesised FA, or FA derived from lipolysis, to generate TAG, as well as being involved in de novo synthesis of TAG. On the other hand, DGAT2 seemed to be specialised for de novo synthesis of TAG from glycerol-3-posphate only. Interestingly, DGAT activities were also important for regulating FA oxidation, indicating a key role in balancing FAs between storage in TAG and efficient utilization through oxidation. Finally, we observed that inhibition of DGAT enzymes could potentially alter glucose-FA interactions in skeletal muscle. In summary, treatment with DGAT1 or DGAT2 specific inhibitors resulted in different responses on lipid metabolism in human myotubes, indicating that the two enzymes play distinct roles in TAG metabolism in skeletal muscle.


Increased missense mutation burden of Fatty Acid metabolism related genes in nunavik inuit population.

  • Sirui Zhou‎ et al.
  • PloS one‎
  • 2015‎

Nunavik Inuit (northern Quebec, Canada) reside along the arctic coastline where for generations their daily energy intake has mainly been derived from animal fat. Given this particular diet it has been hypothesized that natural selection would lead to population specific allele frequency differences and unique variants in genes related to fatty acid metabolism. A group of genes, namely CPT1A, CPT1B, CPT1C, CPT2, CRAT and CROT, encode for three carnitine acyltransferases that are important for the oxidation of fatty acids, a critical step in their metabolism.


Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions.

  • Sašo Jančič‎ et al.
  • PloS one‎
  • 2016‎

The food- and airborne fungal genus Wallemia comprises seven xerophilic and halophilic species: W. sebi, W. mellicola, W. canadensis, W. tropicalis, W. muriae, W. hederae and W. ichthyophaga. All listed species are adapted to low water activity and can contaminate food preserved with high amounts of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known to support the production of secondary metabolites, supplemented with different concentrations of NaCl, glucose and MgCl2. In more than two hundred extracts approximately one hundred different compounds were detected using high-performance liquid chromatography-diode array detection (HPLC-DAD). Although the genome data analysis of W. mellicola (previously W. sebi sensu lato) and W. ichthyophaga revealed a low number of secondary metabolites clusters, a substantial number of secondary metabolites were detected at different conditions. Machine learning analysis of the obtained dataset showed that NaCl has higher influence on the production of secondary metabolites than other tested solutes. Mass spectrometric analysis of selected extracts revealed that NaCl in the medium affects the production of some compounds with substantial biological activities (wallimidione, walleminol, walleminone, UCA 1064-A and UCA 1064-B). In particular an increase in NaCl concentration from 5% to 15% in the growth media increased the production of the toxic metabolites wallimidione, walleminol and walleminone.


Constitutive Plasma Membrane Turnover in T-REx293 cells via Ordered Membrane Domain Endocytosis under Mitochondrial Control.

  • Christine Deisl‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Clathrin/dynamin-independent endocytosis of ordered plasma membrane domains (ordered membrane domain endocytosis, OMDE) can become massive in response to cytoplasmic Ca elevations, G protein activation by non-hydrolyzable GTP analogs, and enhanced oxidative metabolism. In patch-clamped murine bone marrow macrophages (BMMs), cytoplasmic succinate and pyruvate, but not β-hydroxybutyrate, induce OMDE of 75% of the plasma membrane within 2 min. The responses require palmitoylation of membrane proteins, being decreased by 70% in BMMs lacking the acyltransferase, DHHC5, by treatment with carnitine to shift long-chain acyl groups from cytoplasmic to mitochondrial acyl-CoAs, by bromopalmitate/albumin complexes to block DHHCs, and by the mitochondria-specific cyclosporin, NIM811, to block permeability transition pores that may release mitochondrial coenzyme A into the cytoplasm. Using T-REx293 cells, OMDE amounts to 40% with succinate, pyruvate, or GTPγS, and it is inhibited by actin cytoskeleton disruption. Pyruvate-induced OMDE is blocked by the hydrophobic antioxidant, edaravone, which prevents permeability transition pore openings. Using fluorescent 3kD dextrans to monitor endocytosis, OMDE appears to be constitutively active in T-REx293 cells but not in BMMs. After 1 h without substrates or bicarbonate, pyruvate and hydroxybutyrate inhibit constitutive OMDE, as expected for a shift of CoA from long-chain acyl-CoAs to other CoA metabolites. In the presence of bicarbonate, pyruvate strongly enhances OMDE, which is then blocked by β-hydroxybutyrate, bromopalmitate/albumin complexes, cyclosporines, or edaravone. After pyruvate responses, T-REx293 cells grow normally with no evidence for apoptosis. Fatty acid-free albumin (15 μM) inhibits basal OMDE in T-REx293 cells, as do cyclosporines, carnitine, and RhoA blockade. Surprisingly, OMDE in the absence of substrates and bicarbonate is not inhibited by siRNA knockdown of the acyltransferases, DHHC5 or DHHC2, which are required for activated OMDE in patch clamp experiments. We verify biochemically that small CoA metabolites decrease long-chain acyl-CoAs. We verify also that palmitoylations of many PM-associated proteins decrease and increase when OMDE is inhibited and stimulated, respectively, by different metabolites. STED microscopy reveals that vesicles formed during constitutive OMDE in T-REX293 cells have 90 to 130 nm diameters. In summary, OMDE is likely a major G-protein-dependent endocytic mechanism that can be constitutively active in some cell types, albeit not BMMs. OMDE depends on different DHHC acyltransferases in different circumstances and can be limited by local supplies of fatty acids, CoA, and long-chain acyl-CoAs.


Comparison of serum acylcarnitine levels in patients with myalgic encephalomyelitis/chronic fatigue syndrome and healthy controls: a systematic review and meta-analysis.

  • Ryuhei Jinushi‎ et al.
  • Journal of translational medicine‎
  • 2023‎

Myalgic encephalomyelitis/chronic fatigue syndrome/systemic exertion intolerance disease (ME/CFS/SEID) is a condition diagnosed primarily based on clinical symptoms, including prolonged fatigue and post-exertional malaise; however, there is no specific test for the disease. Additionally, diagnosis can be challenging since healthcare professionals may lack sufficient knowledge about the disease. Prior studies have shown that patients with ME/CFS/SEID have low serum acylcarnitine levels, which may serve as a surrogate test for patients suspected of having this disease. This systematic review and meta-analysis aimed to investigate the differences in serum acylcarnitine levels between patients with ME/CFS/SEID and healthy controls.


Bromelain Confers Protection against the Non-Alcoholic Fatty Liver Disease in Male C57bl/6 Mice.

  • Po-An Hu‎ et al.
  • Nutrients‎
  • 2020‎

We aimed to investigate the effect of bromelain, the extract from stems of pineapples on the high-fat diet (HFD)-induced deregulation of hepatic lipid metabolism and non-alcoholic fatty liver disease (NAFLD), and its underlying mechanism in mice. Mice were daily administrated with HFD with or without bromelain (20 mg/kg) for 12 weeks, and we found that bromelain decreased the HFD-induced increase in body weight by ~30%, organ weight by ~20% in liver weight and ~40% in white adipose tissue weight. Additionally, bromelain attenuated HFD-induced hyperlipidemia by decreasing the serum level of total cholesterol by ~15% and triglycerides level by ~25% in mice. Moreover, hepatic lipid accumulation, particularly that of total cholesterol, free cholesterol, triglycerides, fatty acids, and glycerol, was decreased by 15-30% with bromelain treatment. Mechanistically, these beneficial effects of bromelain on HFD-induced hyperlipidemia and hepatic lipid accumulation may be attributed to the decreased fatty acid uptake and cholesteryl ester synthesis and the increased lipoprotein internalization, bile acid metabolism, cholesterol clearance, the assembly and secretion of very low-density lipoprotein, and the β-oxidation of fatty acids by regulating the protein expression involved in the above mentioned hepatic metabolic pathways. Collectively, these findings suggest that bromelain has therapeutic value for treating NAFLD and metabolic diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: