2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Transduction of E2F-1 TAT fusion proteins represses expression of hTERT in primary ductal breast carcinoma cell lines.

  • Kimberly A Elliott‎ et al.
  • Molecular cancer‎
  • 2008‎

Telomerase expression is detectable in 81-95% of breast carcinomas and may serve as a therapeutic target. The objective of this study was to investigate repression of telomerase activity in primary ductal breast cancer cells through transcriptional regulation of the catalytic subunit hTERT. We hypothesized that inhibition of telomerase expression could be achieved via Tat mediated protein transduction of the repressor protein E2F-1.


Epidermal growth factor (EGF) and interleukin (IL)-1β synergistically promote ERK1/2-mediated invasive breast ductal cancer cell migration and invasion.

  • Liqiang Ma‎ et al.
  • Molecular cancer‎
  • 2012‎

Patients with invasive breast ductal carcinoma (IBDC) with metastasis have a very poor prognosis. Little is known about the synergistic action of growth and inflammatory factors in IBDC metastases.


Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities.

  • Xiufang Xu‎ et al.
  • Molecular cancer‎
  • 2020‎

Wnt signaling is a highly conserved signaling pathway that plays a critical role in controlling embryonic and organ development, as well as cancer progression. Genome-wide sequencing and gene expression profile analyses have demonstrated that Wnt signaling is involved mainly in the processes of breast cancer proliferation and metastasis. The most recent studies have indicated that Wnt signaling is also crucial in breast cancer immune microenvironment regulation, stemness maintenance, therapeutic resistance, phenotype shaping, etc. Wnt/β-Catenin, Wnt-planar cell polarity (PCP), and Wnt-Ca2+ signaling are three well-established Wnt signaling pathways that share overlapping components and play different roles in breast cancer progression. In this review, we summarize the main findings concerning the relationship between Wnt signaling and breast cancer and provide an overview of existing mechanisms, challenges, and potential opportunities for advancing the therapy and diagnosis of breast cancer.


Identification of early molecular markers for breast cancer.

  • Céline Kretschmer‎ et al.
  • Molecular cancer‎
  • 2011‎

The ductal carcinoma in situ (DCIS) of the mammary gland represents an early, pre-invasive stage in the development of invasive breast carcinoma. Since DCIS is a curable disease, it would be highly desirable to identify molecular markers that allow early detection. Mice transgenic for the WAP-SV40 early genome region were used as a model for DCIS development. Gene expression profiling was carried out on DCIS-bearing mice and control animals. Additionally, a set of human DCIS and invasive mammary tumors were analyzed in a similar fashion. Enhanced expression of these marker genes in human and murine samples was validated by quantitative RT-PCR. Besides, marker gene expression was also validated by immunohistochemistry of human samples. Furthermore in silico analyses using an online microarray database were performed.


Function of RasGRP3 in the formation and progression of human breast cancer.

  • Zsuzsanna Nagy‎ et al.
  • Molecular cancer‎
  • 2014‎

Ras guanine nucleotide exchange factors (RasGEFs) mediate the activation of the Ras signaling pathway that is over activated in many human cancers. The RasGRP3, an activator of H-Ras and R-Ras protein exerts oncogenic effects and the overexpression of the protein is observed in numerous malignant cancer types. Here, we investigated the putative alteration of expression and potential function of RasGRP3 in the formation and progression of human breast cancer.


High expression of protein phosphatase 4 is associated with the aggressive malignant behavior of colorectal carcinoma.

  • Xinxiang Li‎ et al.
  • Molecular cancer‎
  • 2015‎

Recent evidence suggests an important role of protein phosphatase 4 (PP4C) in the progression of several cancers, including breast cancer, lung cancer and pancreatic ductal adenocarcinoma. However, the contribution of PP4C to colorectal carcinoma (CRC) remains elusive.


Higher levels of TIMP-1 expression are associated with a poor prognosis in triple-negative breast cancer.

  • Guangcun Cheng‎ et al.
  • Molecular cancer‎
  • 2016‎

Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a multifunctional protein that can directly regulate apoptosis and metastasis. In this study, we investigated the functional and molecular mechanisms by which TIMP-1 influences triple-negative breast cancer (TNBC).


Cytokeratin 8 ectoplasmic domain binds urokinase-type plasminogen activator to breast tumor cells and modulates their adhesion, growth and invasiveness.

  • Natasa Obermajer‎ et al.
  • Molecular cancer‎
  • 2009‎

Generation of plasmin is a characteristic of tumor cells, promoting the degradation of extracellular matrix, tumor progression and metastasis. The process is accelerated if plasminogen and plasminogen activator are bound to their cell surface receptors.


A conserved region within interferon regulatory factor 5 controls breast cancer cell migration through a cytoplasmic and transcription-independent mechanism.

  • Erica Maria Pimenta‎ et al.
  • Molecular cancer‎
  • 2015‎

Migration of breast cancer cells out of a duct or lobule is a prerequisite for invasion and metastasis. However, the factors controlling breast cancer cell migration are not fully elucidated. We previously found that expression of the transcription factor interferon regulatory factor 5 (IRF5) is significantly decreased as a breast lesion progresses from a non-malignant stage to ductal carcinoma in situ and is eventually lost in ~80% of invasive ductal carcinomas examined. Human in vitro and murine in vivo models of invasive breast cancer confirmed an important role for IRF5 in regulating cell motility, invasion and/or metastasis; yet, the mechanism(s) by which this occurs is not known. Since IRF5 is primarily expressed in the cytoplasm of human mammary epithelial cells, we hypothesized that IRF5 may function in a transcription-independent manner to control intrinsic cell migration.


Lysyl hydroxylase LH1 promotes confined migration and metastasis of cancer cells by stabilizing Septin2 to enhance actin network.

  • Zihan Yang‎ et al.
  • Molecular cancer‎
  • 2023‎

Excessive extracellular matrix deposition and increased stiffness are typical features of solid tumors such as hepatocellular carcinoma (HCC) and pancreatic ductal adenocarcinoma (PDAC). These conditions create confined spaces for tumor cell migration and metastasis. The regulatory mechanism of confined migration remains unclear.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: