Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Acinetobacter baumannii Targets Human Carcinoembryonic Antigen-Related Cell Adhesion Molecules (CEACAMs) for Invasion of Pneumocytes.

  • Cecilia Ambrosi‎ et al.
  • mSystems‎
  • 2020‎

Multidrug-resistant Acinetobacter baumannii is regarded as a life-threatening pathogen mainly associated with nosocomial and community-acquired pneumonia. Here, we show that A. baumannii can bind the human carcinoembryonic antigen-related cell adhesion molecule (CEACAM) receptors CEACAM1, CEACAM5, and CEACAM6. This specific interaction enhances A. baumannii internalization in membrane-bound vacuoles, promptly decorated with Rab5, Rab7, and lipidated microtubule-associated protein light chain 3 (LC3). Dissecting intracellular signaling pathways revealed that infected pneumocytes trigger interleukin-8 (IL-8) secretion via the extracellular signal-regulated kinase (ERK)1/2 and nuclear factor-kappa B (NF-κB) signaling pathways for A. baumannii clearance. However, in CEACAM1-L-expressing cells, IL-8 secretion lasts only 24 h, possibly due to an A. baumannii-dependent effect on the CEACAM1-L intracellular domain. Conversely, the glycosylphosphatidylinositol-anchored CEACAM5 and CEACAM6 activate the c-Jun NH2-terminal kinase (JNK)1/2-Rubicon-NOX2 pathway, suggestive of LC3-associated phagocytosis. Overall, our data show for the first time novel mechanisms of adhesion to and invasion of pneumocytes by A. baumannii via CEACAM-dependent signaling pathways that eventually lead to bacterial killing. These findings suggest that CEACAM upregulation could put patients at increased risk of lower respiratory tract infection by A. baumannii IMPORTANCE This work shows for the first time that Acinetobacter baumannii binds to carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), CEACAM5, and CEACAM6. This binding significantly enhances A. baumannii internalization within alveolar host cell epithelia. Intracellular trafficking involves typical Rab5 and Rab7 vacuolar proteins as well as light chain 3 (LC3) and slowly progresses to bacterial killing by endosome acidification. CEACAM engagement by A. baumannii leads to distinct and specific downstream signaling pathways. The CEACAM1 pathway finely tunes interleukin-8 (IL-8) secretion, whereas CEACAM5 and CEACAM6 mediate LC3-associated phagocytosis. The present study provides new insights into A. baumannii-host interactions and could represent a promising therapeutic strategy to reduce pulmonary infections caused by this pathogen.


Anti-carcinoembryonic antigen-related cell adhesion molecule antibody for fluorescence visualization of primary colon cancer and metastases in patient-derived orthotopic xenograft mouse models.

  • Hannah M Hollandsworth‎ et al.
  • Oncotarget‎
  • 2020‎

Monoclonal antibody (mAb) 6G5j is a novel anti-CEACAM monoclonal antibody. Our aim was to investigate mAb 6G5j binding characteristics and to validate fluorescence targeting of colorectal tumors and metastases in patient derived orthotopic xenograft (PDOX) models with fluorescently labeled 6G5j.


Carcinoembryonic antigen (CEA)-related cell adhesion molecules are co-expressed in the human lung and their expression can be modulated in bronchial epithelial cells by non-typable Haemophilus influenzae, Moraxella catarrhalis, TLR3, and type I and II interferons.

  • Esther Klaile‎ et al.
  • Respiratory research‎
  • 2013‎

The carcinoembryonic antigen (CEA)-related cell adhesion molecules CEACAM1 (BGP, CD66a), CEACAM5 (CEA, CD66e) and CEACAM6 (NCA, CD66c) are expressed in human lung. They play a role in innate and adaptive immunity and are targets for various bacterial and viral adhesins. Two pathogens that colonize the normally sterile lower respiratory tract in patients with chronic obstructive pulmonary disease (COPD) are non-typable Haemophilus influenzae (NTHI) and Moraxella catarrhalis. Both pathogens bind to CEACAMs and elicit a variety of cellular reactions, including bacterial internalization, cell adhesion and apoptosis.


Fusobacterium nucleatum CbpF Mediates Inhibition of T Cell Function Through CEACAM1 Activation.

  • Johanna Galaski‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2021‎

F. nucleatum is an anaerobic bacterium that is associated with several tumor entities and promotes tumorigenesis. Recent evidence suggests that F. nucleatum binds the inhibitory receptor carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) via the trimeric autotransporter adhesin CbpF. However, whether this binding is functional or whether other fusobacterial trimeric autotransporter adhesins are involved in CEACAM1 activation is unknown. In this study, using F. nucleatum mutants lacking the type 5c trimeric autotransporter adhesins fvcA (CbpF), fvcB, fvcC, and fvcD, we show that F. nucleatum CbpF binds and activates CEACAM1 and also binds carcinoembryonic antigen (CEA), a tumor-associated protein. We further find that CEACAM antibodies directed against the CEACAM N-terminal domain block the CbpF-CEACAM1 interaction. In functional assays, we demonstrate CbpF-dependent inhibition of CD4+ T cell response. Thus, we characterize an immune evasion mechanism in which F. nucleatum uses its surface protein CbpF to inhibit T cell function by activating CEACAM1.


Species-specific evolution of immune receptor tyrosine based activation motif-containing CEACAM1-related immune receptors in the dog.

  • Robert Kammerer‎ et al.
  • BMC evolutionary biology‎
  • 2007‎

Although the impact of pathogens on the evolution of the mammalian immune system is still under debate, proteins, which both regulate immune responses and serve as cellular receptors for pathogens should be at the forefront of pathogen-driven host evolution. The CEA (carcinoembryonic antigen) gene family codes for such proteins and indeed shows tremendous species-specific variation between human and rodents. Since little is known about the CEA gene family in other lineages of placental mammals, we expected to gain new insights into the evolution of the rapidly diverging CEA family by analyzing the CEA family of the dog.


CEACAM1-4L Promotes Anchorage-Independent Growth in Melanoma.

  • Stefanie Löffek‎ et al.
  • Frontiers in oncology‎
  • 2015‎

Widespread metastasis is the leading course of death in many types of cancer, including malignant melanoma. The process of metastasis can be divided into a number of complex cell biological events, collectively termed the "invasion-metastasis cascade." Previous reports have characterized the capability of anchorage-independent growth of cancer cells in vitro as a key characteristic of highly aggressive tumor cells, particularly with respect to metastatic potential. Biological heterogeneity as well as drastic alterations in cell adhesion of disseminated cancer cells support escape mechanisms for metastases to overcome conventional therapies. Here, we show that exclusively the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) splice variant CEACAM1-4L supports an anchorage-independent signature in malignant melanoma. These results highlight important variant-specific modulatory functions of CEACAM1 for metastatic spread in patients suffering malignant melanoma.


Helicobacter pylori adhesin HopQ disrupts trans dimerization in human CEACAMs.

  • Kristof Moonens‎ et al.
  • The EMBO journal‎
  • 2018‎

The human gastric pathogen Helicobacter pylori is a major causative agent of gastritis, peptic ulcer disease, and gastric cancer. As part of its adhesive lifestyle, the bacterium targets members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family by the conserved outer membrane adhesin HopQ. The HopQ-CEACAM1 interaction is associated with inflammatory responses and enables the intracellular delivery and phosphorylation of the CagA oncoprotein via a yet unknown mechanism. Here, we generated crystal structures of HopQ isotypes I and II bound to the N-terminal domain of human CEACAM1 (C1ND) and elucidated the structural basis of H. pylori specificity toward human CEACAM receptors. Both HopQ alleles target the β-strands G, F, and C of C1ND, which form the trans dimerization interface in homo- and heterophilic CEACAM interactions. Using SAXS, we show that the HopQ ectodomain is sufficient to induce C1ND monomerization and thus providing H. pylori a route to influence CEACAM-mediated cell adherence and signaling events.


Soluble CEACAM8 interacts with CEACAM1 inhibiting TLR2-triggered immune responses.

  • Bernhard B Singer‎ et al.
  • PloS one‎
  • 2014‎

Lower respiratory tract bacterial infections are characterized by neutrophilic inflammation in the airways. The carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 8 is expressed in and released by human granulocytes. Our study demonstrates that human granulocytes release CEACAM8 in response to bacterial DNA in a TLR9-dependent manner. Individuals with a high percentage of bronchial lavage fluid (BALF) granulocytes were more likely to have detectable levels of released CEACAM8 in the BALF than those with a normal granulocyte count. Soluble, recombinant CEACAM8-Fc binds to CEACAM1 expressed on human airway epithelium. Application of CEACAM8-Fc to CEACAM1-positive human pulmonary epithelial cells resulted in reduced TLR2-dependent inflammatory responses. These inhibitory effects were accompanied by tyrosine phosphorylation of the immunoreceptor tyrosine-based inhibitory motif (ITIM) of CEACAM1 and by recruitment of the phosphatase SHP-1, which could negatively regulate Toll-like receptor 2-dependent activation of the phosphatidylinositol 3-OH kinase-Akt kinase pathway. Our results suggest a new mechanism by which granulocytes reduce pro-inflammatory immune responses in human airways via secretion of CEACAM8 in neutrophil-driven bacterial infections.


CEACAM1 promotes CD8+ T cell responses and improves control of a chronic viral infection.

  • Vishal Khairnar‎ et al.
  • Nature communications‎
  • 2018‎

Dysfunction of CD8+ T cells can lead to the development of chronic viral infection. Identifying mechanisms responsible for such T cell dysfunction is therefore of great importance to understand how to prevent persistent viral infection. Here we show using lymphocytic choriomeningitis virus (LCMV) infection that carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is fundamental for recruiting lymphocyte-specific protein kinase (Lck) into the T cell receptor complex to form an efficient immunological synapse. CEACAM1 is essential for activation of CD8+ T cells, and the absence of CEACAM1 on virus-specific CD8+ T cells limits the antiviral CD8+ T cell response. Treatment with anti-CEACAM1 antibody stabilizes Lck in the immunological synapse, prevents CD8+ T cell exhaustion, and improves control of virus infection in vivo. Treatment of human virus-specific CD8+ T cells with anti-CEACAM1 antibody similarly enhances their proliferation. We conclude that CEACAM1 is an important regulator of virus-specific CD8+ T cell functions in mice and humans and represents a promising therapeutic target for modulating CD8+ T cells.


The CEACAM1 N-terminal Ig domain mediates cis- and trans-binding and is essential for allosteric rearrangements of CEACAM1 microclusters.

  • Esther Klaile‎ et al.
  • The Journal of cell biology‎
  • 2009‎

Cell adhesion molecules (CAMs) sense the extracellular microenvironment and transmit signals to the intracellular compartment. In this investigation, we addressed the mechanism of signal generation by ectodomains of single-pass transmembrane homophilic CAMs. We analyzed the structure and homophilic interactions of carcinoembryonic antigen (CEA)-related CAM 1 (CEACAM1), which regulates cell proliferation, apoptosis, motility, morphogenesis, and microbial responses. Soluble and membrane-attached CEACAM1 ectodomains were investigated by surface plasmon resonance-based biosensor analysis, molecular electron tomography, and chemical cross-linking. The CEACAM1 ectodomain, which is composed of four glycosylated immunoglobulin-like (Ig) domains, is highly flexible and participates in both antiparallel (trans) and parallel (cis) homophilic binding. Membrane-attached CEACAM1 ectodomains form microclusters in which all four Ig domains participate. Trans-binding between the N-terminal Ig domains increases formation of CEACAM1 cis-dimers and changes CEACAM1 interactions within the microclusters. These data suggest that CEACAM1 transmembrane signaling is initiated by adhesion-regulated changes of cis-interactions that are transmitted to the inner phase of the plasma membrane.


Fluorophore-conjugated Helicobacter pylori recombinant membrane protein (HopQ) labels primary colon cancer and metastases in orthotopic mouse models by binding CEA-related cell adhesion molecules.

  • Hannah M Hollandsworth‎ et al.
  • Translational oncology‎
  • 2020‎

HopQ is an outer-membrane protein of Helicobacter pylori that binds to human carcinoembryonic antigen-related cell-adhesion molecules (CEACAMs) with high specificity. We aimed to investigate fluorescence targeting of CEACAM-expressing colorectal tumors in patient-derived orthotopic xenograft (PDOX) models with fluorescently labeled recombinant HopQ (rHopQ). Western blotting, flow cytometry and ELISA were performed to determine the efficiency of rHopQ binding to CEACAMs. rHopQ was conjugated to IR800DyeCW (rHopQ-IR800). Nude mice received orthotopic implantation of colon cancer tumors. Three weeks later, mice were administered 25 μg or 50 μg HopQ-IR800 and imaged 24 or 48 h later. Intravital images were analyzed for tumor-to-background ratio (TBR). Flow cytometry and ELISA demonstrated binding of HopQ to CEACAM1, 3 and 5. Dose-response intravital imaging in PDOX models demonstrated optimal results 48 h after administration of 50 μg rHopQ-IR800 (TBR = 3.576) in our protocol. Orthotopic models demonstrated clear tumor margins of primary tumors and small regional metastases with a mean TBR = 3.678 (SD ± 1.027). rHopQ showed specific binding to various CEACAMs in PDOX models. rHopQ may be useful for CEACAM-positive tumor and metastasis detection for pre-surgical diagnosis, intra-operative imaging and fluorescence-guided surgery.


Fusobacterium spp. target human CEACAM1 via the trimeric autotransporter adhesin CbpF.

  • Matthew L Brewer‎ et al.
  • Journal of oral microbiology‎
  • 2019‎

Neisseria meningitidis, Haemophilus influenzae, and Moraxella catarrhalis are pathogenic bacteria adapted to reside on human respiratory mucosal epithelia. One common feature of these species is their ability to target members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, especially CEACAM1, which is achieved via structurally distinct ligands expressed by each species. Beside respiratory epithelial cells, cells at the dentogingival junction express high levels of CEACAM1. It is possible that bacterial species resident within the oral cavity also utilise CEACAM1 for colonisation and invasion of gingival tissues. From a screen of 59 isolates from the human oral cavity representing 49 bacterial species, we identified strains from Fusobacterium bound to CEACAM1. Of the Fusobacterium species tested, the CEACAM1-binding property was exhibited by F. nucleatum (Fn) and F. vincentii (Fv) but not F. polymorphum (Fp) or F. animalis (Fa) strains tested. These studies identified that CEACAM adhesion was mediated using a trimeric autotransporter adhesin (TAA) for which no function has thus far been defined. We therefore propose the name CEACAM binding protein of Fusobacterium (CbpF). CbpF was identified to be present in the majority of unspeciated Fusobacterium isolates confirming a subset of Fusobacterium spp. are able to target human CEACAM1.


Deregulation of the CEACAM expression pattern causes undifferentiated cell growth in human lung adenocarcinoma cells.

  • Bernhard B Singer‎ et al.
  • PloS one‎
  • 2010‎

CEACAM1, CEA/CEACAM5, and CEACAM6 are cell adhesion molecules (CAMs) of the carcinoembryonic antigen (CEA) family that have been shown to be deregulated in lung cancer and in up to 50% of all human cancers. However, little is known about the functional impact of these molecules on undifferentiated cell growth and tumor progression. Here we demonstrate that cell surface expression of CEACAM1 on confluent A549 human lung adenocarcinoma cells plays a critical role in differentiated, contact-inhibited cell growth. Interestingly, CEACAM1-L, but not CEACAM1-S, negatively regulates proliferation via its ITIM domain, while in proliferating cells no CEACAM expression is detectable. Furthermore, we show for the first time that CEACAM6 acts as an inducer of cellular proliferation in A549 cells, likely by interfering with the contact-inhibiting signal triggered by CEACAM1-4L, leading to undifferentiated anchorage-independent cell growth. We also found that A549 cells expressed significant amounts of non-membrane anchored variants of CEACAM5 and CEACAM6, representing a putative source for the increased CEACAM5/6 serum levels frequently found in lung cancer patients. Taken together, our data suggest that post-confluent contact inhibition is established and maintained by CEACAM1-4L, but disturbances of CEACAM1 signalling by CEACAM1-4S and other CEACAMs lead to undifferentiated cell growth and malignant transformation.


Homophilic adhesion and CEACAM1-S regulate dimerization of CEACAM1-L and recruitment of SHP-2 and c-Src.

  • Mario M Müller‎ et al.
  • The Journal of cell biology‎
  • 2009‎

Carcinoembryonic antigen (CEA)-related cell adhesion molecule 1 (CAM1 [CEACAM1]) mediates homophilic cell adhesion and regulates signaling. Although there is evidence that CEACAM1 binds and activates SHP-1, SHP-2, and c-Src, knowledge about the mechanism of transmembrane signaling is lacking. To analyze the regulation of SHP-1/SHP-2/c-Src binding, we expressed various CFP/YFP-tagged CEACAM1 isoforms in epithelial cells. The supramolecular organization of CEACAM1 was examined by cross-linking, coclustering, coimmunoprecipitation, and fluorescence resonance energy transfer. SHP-1/SHP-2/c-Src binding was monitored by coimmunoprecipitation and phosphotyrosine-induced recruitment to CEACAM1-L in cellular monolayers. We find that trans-homophilic CEACAM1 binding induces cis-dimerization by an allosteric mechanism transmitted by the N-terminal immunoglobulin-like domain. The balance of SHP-2 and c-Src binding is dependent on the monomer/dimer equilibrium of CEACAM1-L and is regulated by trans-binding, whereas SHP-1 does not bind under physiological conditions. CEACAM1-L homodimer formation is reduced by coexpression of CEACAM1-S and modulated by antibody ligation. These data suggest that transmembrane signaling by CEACAM1 operates by alteration of the monomer/dimer equilibrium, which leads to changes in the SHP-2/c-Src-binding ratio.


Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions.

  • Marc Seifert‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

The generation and functions of human peripheral blood (PB) IgM(+)IgD(+)CD27(+) B lymphocytes with somatically mutated IgV genes are controversially discussed. We determined their differential gene expression to naive B cells and to IgM-only and IgG(+) memory B cells. This analysis revealed a high similarity of IgM(+)(IgD(+))CD27(+) and IgG(+) memory B cells but also pointed at distinct functional capacities of both subsets. In vitro analyses revealed a tendency of activated IgM(+)IgD(+)CD27(+) B cells to migrate to B-cell follicles and undergo germinal center (GC) B-cell differentiation, whereas activated IgG(+) memory B cells preferentially showed a plasma cell (PC) fate. This observation was supported by reverse regulation of B-cell lymphoma 6 and PR domain containing 1 and differential BTB and CNC homology 1, basic leucine zipper transcription factor 2 expression. Moreover, IgM(+)IgD(+)CD27(+) B lymphocytes preferentially responded to neutrophil-derived cytokines. Costimulation with catecholamines, carcinoembryonic antigen cell adhesion molecule 8 (CEACAM8), and IFN-γ caused differentiation of IgM(+)IgD(+)CD27(+) B cells into PCs, induced class switching to IgG2, and was reproducible in cocultures with neutrophils. In conclusion, this study substantiates memory B-cell characteristics of human IgM(+)IgD(+)CD27(+) B cells in that they share typical memory B-cell transcription patterns with IgG(+) post-GC B cells and show a faster and more vigorous restimulation potential, a hallmark of immune memory. Moreover, this work reveals a functional plasticity of human IgM memory B cells by showing their propensity to undergo secondary GC reactions upon reactivation, but also by their special role in early inflammation via interaction with immunomodulatory neutrophils.


Tumor and endothelial cell-derived microvesicles carry distinct CEACAMs and influence T-cell behavior.

  • Harrison T Muturi‎ et al.
  • PloS one‎
  • 2013‎

Normal and malignant cells release a variety of different vesicles into their extracellular environment. The most prominent vesicles are the microvesicles (MVs, 100-1000 nm in diameter), which are shed of the plasma membrane, and the exosomes (70-120 nm in diameter), derivates of the endosomal system. MVs have been associated with intercellular communication processes and transport numerous proteins, lipids and RNAs. As essential component of immune-escape mechanisms tumor-derived MVs suppress immune responses. Additionally, tumor-derived MVs have been found to promote metastasis, tumor-stroma interactions and angiogenesis. Since members of the carcinoembryonic antigen related cell adhesion molecule (CEACAM)-family have been associated with similar processes, we studied the distribution and function of CEACAMs in MV fractions of different human epithelial tumor cells and of human and murine endothelial cells. Here we demonstrate that in association to their cell surface phenotype, MVs released from different human epithelial tumor cells contain CEACAM1, CEACAM5 and CEACAM6, while human and murine endothelial cells were positive for CEACAM1 only. Furthermore, MVs derived from CEACAM1 transfected CHO cells carried CEACAM1. In terms of their secretion kinetics, we show that MVs are permanently released in low doses, which are extensively increased upon cellular starvation stress. Although CEACAM1 did not transmit signals into MVs it served as ligand for CEACAM expressing cell types. We gained evidence that CEACAM1-positive MVs significantly increase the CD3 and CD3/CD28-induced T-cell proliferation. All together, our data demonstrate that MV-bound forms of CEACAMs play important roles in intercellular communication processes, which can modulate immune response, tumor progression, metastasis and angiogenesis.


Unaltered Fungal Burden and Lethality in Human CEACAM1-Transgenic Mice During Candida albicans Dissemination and Systemic Infection.

  • Esther Klaile‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1, CD66a) is a receptor for Candida albicans. It is crucial for the immune response of intestinal epithelial cells to this opportunistic pathogen. Moreover, CEACAM1 is of importance for the mucosal colonization by different bacterial pathogens. We therefore studied the influence of the human CEACAM1 receptor in human CEACAM1-transgenic mice on the C. albicans colonization and infection utilizing a colonization/dissemination and a systemic infection mouse model. Our results showed no alterations in the host response between the transgenic mice and the wild-type littermates to the C. albicans infections. Both mouse strains showed comparable C. albicans colonization and mycobiota, similar fungal burdens in various organs, and a similar survival in the systemic infection model. Interestingly, some of the mice treated with anti-bacterial antibiotics (to prepare them for C. albicans colonization via oral infection) also showed a strong reduction in endogenous fungi instead of the normally observed increase in fungal numbers. This was independent of the expression of human CEACAM1. In the systemic infection model, the human CEACAM1 expression was differentially regulated in the kidneys and livers of Candida-infected transgenic mice. Notably, in the kidneys, a total loss of the largest human CEACAM1 isoform was observed. However, the overwhelming immune response induced in the systemic infection model likely covered any CEACAM1-specific effects in the transgenic animals. In vitro studies using bone marrow-derived neutrophils from both mouse strains also revealed no differences in their reaction to C. albicans. In conclusion, in contrast to bacterial pathogens interacting with CEACAM1 on different mucosal surfaces, the human CEACAM1-transgenic mice did not reveal a role of human CEACAM1 in the in vivo candidiasis models used here. Further studies and different approaches will be needed to reveal a putative role of CEACAM1 in the host response to C. albicans.


Binding of Candida albicans to Human CEACAM1 and CEACAM6 Modulates the Inflammatory Response of Intestinal Epithelial Cells.

  • Esther Klaile‎ et al.
  • mBio‎
  • 2017‎

Candida albicans colonizes human mucosa, including the gastrointestinal tract, as a commensal. In immunocompromised patients, C. albicans can breach the intestinal epithelial barrier and cause fatal invasive infections. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1; CD66a), CEACAM5 (CEA), and CEACAM6 (CD66c) are immunomodulatory receptors expressed on human mucosa and are recruited by bacterial and viral pathogens. Here we show for the first time that a fungal pathogen (i.e., C. albicans) also binds directly to the extracellular domain of human CEACAM1, CEACAM3, CEACAM5, and CEACAM6. Binding was specific for human CEACAMs and mediated by the N-terminal IgV-like domain. In enterocytic C2BBe1 cells, C. albicans caused a transient tyrosine phosphorylation of CEACAM1 and induced higher expression of membrane-bound CEACAM1 and soluble CEACAM6. Lack of the CEACAM1 receptor after short hairpin RNA (shRNA) knockdown abolished CXCL8 (interleukin-8) secretion by C2BBe1 cells in response to C. albicans In CEACAM1-competent cells, the addition of recombinant soluble CEACAM6 reduced the C. albicans-induced CXCL8 secretion.IMPORTANCE The present study demonstrates for the first time that fungal pathogens can be recognized by at least four members of the immunomodulatory CEACAM receptor family: CEACAM1, -3, -5, and -6. Three of the four receptors (i.e., CEACAM1, -5, and -6) are expressed in mucosal cells of the intestinal tract, where they are implicated in immunomodulation and control of tissue homeostasis. Importantly, the interaction of the major fungal pathogen in humans Candida albicans with CEACAM1 and CEACAM6 resulted in an altered epithelial immune response. With respect to the broad impact of CEACAM receptors on various aspects of the innate and the adaptive immune responses, in particular epithelial, neutrophil, and T cell behavior, understanding the role of CEACAMs in the host response to fungal pathogens might help to improve management of superficial and systemic fungal infections.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: