2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 164 papers

Organoruthenium(II) complexes of acetazolamide potently inhibit human carbonic anhydrase isoforms I, II, IX and XII.

  • Sara Seršen‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2019‎

Two acetazolamide (AAZ) complexes with ruthenium(II) η6-p-cymene chloride were synthesised, characterised and tested for their inhibitory effects on several carbonic anhydrase (CA, EC 4.2.1.1) isoforms with pharmacological applications. Against human (h) isoform hCA I, the two complexes showed inhibition constants in the range of 8.5-23.4 nM (AAZ has a KI of 250 nM), against hCA II of 0.48-4.2 nM, whereas against hCA IX of 0.63-3.8 nM and against hCA XII of 0.04-0.52 nM, respectively. These highly effective ruthenium acetazolamide derivatives against the tumour-associated CA isoforms IX and XII warrant further in vivo studies, in hypoxic tumours overexpressing these enzymes.


Investigation of piperazines as human carbonic anhydrase I, II, IV and VII activators.

  • Andrea Angeli‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2018‎

Four human (h) carbonic anhydrase isoforms (CA, EC 4.2.1.1), hCA I, II, IV, and VII, were investigated for their activation profile with piperazines belonging to various classes, such as N-aryl-, N-alkyl-, N-acyl-piperazines as well as 2,4-disubstituted derivatives. As the activation mechanism involves participation of the activator in the proton shuttling between the zinc-coordinated water molecule and the external milieu, these derivatives possessing diverse basicity and different scaffolds were appropriate for being investigated as CA activators (CAAs). Most of these derivatives showed CA activating properties against hCA I, II, and VII (cytosolic isoforms) but were devoid of activity against the membrane-associated hCA IV. For hCA I, the KAs were in the range of 32.6-131 µM; for hCA II of 16.2-116 µM, and for hCA VII of 17.1-131 µM. The structure-activity relationship was intricate and not easy to rationalize, but the most effective activators were 1-(2-piperidinyl)-piperazine (KA of 16.2 µM for hCA II), 2-benzyl-piperazine (KA of 17.1 µM for hCA VII), and 1-(3-benzylpiperazin-1-yl)propan-1-one (KA of 32.6 µM for hCA I). As CAAs may have interesting pharmacologic applications in cognition and for artificial tissue engineering, investigation of new classes of activators may be crucial for this relatively new research field.


Novel sulphonamides incorporating triazene moieties show powerful carbonic anhydrase I and II inhibitory properties.

  • Sinan Bilginer‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2020‎

A series of compounds incorporating 3-(3-(2/3/4-substituted phenyl)triaz-1-en-1-yl) benzenesulfonamide moieties were synthesised and their chemical structure was confirmed by physico-chemical methods. Carbonic anhydrase (CA, EC 4.2.1.1) inhibitory effects of the compounds were evaluated against human isoforms hCA I and II. KI values of these sulphonamides were in the range of 21 ± 4-72 ± 2 nM towards hCA I and in the range of 16 ± 6-40 ± 2 nM against hCA II. The 4-fluoro substituted derivative might be considered as an interesting lead due to its effective inhibitory action against both hCA I and hCA II (KIs of 21 nM), a profile rarely seen among other sulphonamide CA inhibitors, making it of interest in systems where the activity of the two cytosolic isoforms is dysregulated.


Benzamide-4-Sulfonamides Are Effective Human Carbonic Anhydrase I, II, VII, and IX Inhibitors.

  • Morteza Abdoli‎ et al.
  • Metabolites‎
  • 2018‎

A series of benzamides incorporating 4-sulfamoyl moieties were obtained by reacting 4-sulfamoyl benzoic acid with primary and secondary amines and amino acids. These sulfonamides were investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The human (h) isoforms hCA II, VII, and IX were inhibited in the low nanomolar or subnanomolar ranges, whereas hCA I was slightly less sensitive to inhibition (KIs of 5.3⁻334 nM). The β- and γ-class CAs from pathogenic bacteria and fungi, such as Vibrio cholerae and Malassezia globosa, were inhibited in the micromolar range by the sulfonamides reported in the paper. The benzamide-4-sulfonamides are a promising class of highly effective CA inhibitors.


Dioxygen, an unexpected carbonic anhydrase ligand.

  • Marta Ferraroni‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2018‎

Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous metalloenzymes, grouped into seven different classes, which catalyze the reaction of CO2 hydration to bicarbonate and protons. All of the fifteen human isoforms reported to date belong to the α-class and contain zinc as a cofactor. The structure of human Zn,Cu-CA II has been solved which contains a copper ion bound at its N-terminal, coordinated to His4 and His64. In the active site a dioxygen molecule is coordinated to the zinc ion. Since dioxygen is a rather unexpected CA ligand, molecular dynamics (MD) simulations were performed which suggested a superoxide character of the zinc bound O2.


Discovery of novel 1,3-diaryltriazene sulfonamides as carbonic anhydrase I, II, VII, and IX inhibitors.

  • Suleyman Akocak‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2018‎

A series of new 1,3-diaryltriazene sulfonamides was synthesised by reaction of diazonium salt of metanilamide (3-aminobenzene sulfonamide) with substituted aromatic amines. The obtained new compounds were assayed as inhibitors of four physiologically and pharmacologically relevant human (h) isoforms of carbonic anhydrases (CA, EC 4.2.1.1), specifically, hCA I, hCA II, and hCA VII (cytosolic isoforms), as well as the tumour-associated membrane-bound isoform hCA IX. All isoforms investigated here were inhibited by the newly synthesised 1,3-diaryltriazene sulfonamide derivatives from the micromolar to the nanomolar range. The cytosolic isoforms were inhibited with Kis in the range of 92.3-8371.1 nM (hCA I), 4.3-9194.0 nM (hCA II), and 15.6-9477.8 nM (hCA VII), respectively. For the membrane-bound tumour-associated isoform hCA IX, the KI-s ranged between 50.8 and 9268.5 nM. The structure-activity relationship (SAR) with these newly synthesised metanilamide derivatives are discussed in detail.


Intracellular Binding/Unbinding Kinetics of Approved Drugs to Carbonic Anhydrase II Observed by in-Cell NMR.

  • Enrico Luchinat‎ et al.
  • ACS chemical biology‎
  • 2020‎

Candidate drugs rationally designed in vitro often fail due to low efficacy in vivo caused by low tissue availability or because of unwanted side effects. To overcome the limitations of in vitro rational drug design, the binding of candidate drugs to their target needs to be evaluated in the cellular context. Here, we applied in-cell NMR to investigate the binding of a set of approved drugs to the isoform II of carbonic anhydrase (CA) in living human cells. Some compounds were originally developed toward other targets and were later found to inhibit CAs. We observed strikingly different dose- and time-dependent binding, wherein some drugs exhibited a more complex behavior than others. Specifically, some compounds were shown to gradually unbind from intracellular CA II, even in the presence of free compound in the external medium, therefore preventing the quantitative formation of a stable protein-ligand complex. Such observations could be correlated to the known off-target binding activity of these compounds, suggesting that this approach could provide information on the pharmacokinetic profiles of lead candidates at the early stages of multitarget drug design.


Crystal Structure of a Tetrameric Type II β-Carbonic Anhydrase from the Pathogenic Bacterium Burkholderia pseudomallei.

  • Andrea Angeli‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Carbonic anhydrase (CA) is a zinc enzyme that catalyzes the reversible conversion of carbon dioxide to bicarbonate and proton. Currently, CA inhibitors are widely used as antiglaucoma, anticancer, and anti-obesity drugs and for the treatment of neurological disorders. Recently, the potential use of CA inhibitors to fight infections caused by protozoa, fungi, and bacteria has emerged as a new research line. In this article, the X-ray crystal structure of β-CA from Burkholderia pseudomallei was reported. The X-ray crystal structure of this new enzyme was solved at 2.7 Å resolution, revealing a tetrameric type II β-CA with a "closed" active site in which the zinc is tetrahedrally coordinated to Cys46, Asp48, His102, and Cys105. B. pseudomallei is known to encode at least two CAs, a β-CA, and a γ-CA. These proteins, playing a pivotal role in its life cycle and pathogenicity, offer a novel therapeutic opportunity to obtain antibiotics with a different mechanism of action. Furthermore, the new structure can provide a clear view of the β-CA mechanism of action and the possibility to find selective inhibitors for this class of CAs.


Multitargeting application of proline-derived peptidomimetics addressing cancer-related human matrix metalloproteinase 9 and carbonic anhydrase II.

  • Elena Lenci‎ et al.
  • European journal of medicinal chemistry‎
  • 2021‎

A series of d-proline peptidomimetics were evaluated as dual inhibitors of both human carbonic anhydrases (hCAs) and human gelatinases (MMP2 and MMP9), as these enzymes are both involved in the carcinogenesis and tumor invasion processes. The synthesis and enzyme inhibition kinetics of d-proline derivatives containing a biphenyl sulfonamido moiety revealed an interesting inhibition profile of compound XIV towards MMP9 and CAII. The SAR analysis and docking studies revealed a stringent requirement of a trans geometry for the two arylsulfonyl moieties, which are both necessary for inhibition of MMP9 and CAII. As MMP9 and CAII enzymes are both overexpressed in gastrointestinal stromal tumor cells, this molecule may represent an interesting chemical probe for a multitargeting approach on gastric and colorectal cancer.


Synthesis and human carbonic anhydrase I, II, VA, and XII inhibition with novel amino acid-sulphonamide conjugates.

  • Hasan Küçükbay‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2020‎

A series of amino acid-sulphonamide conjugates was prepared through benzotriazole mediated coupling reactions and characterised by 1H-NMR, 13C-NMR, MS, and FTIR spectroscopic techniques as well as elemental analysis. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was determined against four human (h) isoforms, hCA I, hCA II, hCA VA, and hCA XII. Most of the synthesised compounds showed effective in vitro CA inhibitory properties. The new amino acid-sulphonamide conjugates showed potent inhibitory activity against hCA II, some of them at subnanomolar levels, exhibiting more effective inhibitory activity compared to the standard drug acetazolamide. Some of these sulphonamides were also found to be effective inhibitors of hCA I, hCA VA, and hCA XII, with activity from the low to high nanomolar range.


(Hetero)aryl substituted thiazol-2,4-yl scaffold as human carbonic anhydrase I, II, VII and XIV activators.

  • Marouan Rami‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2019‎

Using histamine as lead molecule, a library of (hetero)aryl substituted thiazol-2,4-yl derivatives incorporating pyridine as proton shuttling moiety were obtained and investigated as activators of human carbonic anhydrase (CA, EC 4.2.1.1) isoforms I, II, VII and XIV. Some derivatives displayed good activating and selectivity profiles. This study provides an interesting opportunity to study the thiazole scaffold for the design of CA activators (CAAs), possibly acting on the central nervous system and targeting pathologies involving memory and learning impairments.


New Insights into Conformationally Restricted Carbonic Anhydrase Inhibitors.

  • Jacob Combs‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

This paper reports an investigation into the impact of pyridyl functional groups in conjunction with hydroxide-substituted benzenesulfonamides on the inhibition of human carbonic anhydrase (CA; EC 4.2.1.1) enzymes. These compounds were tested in vitro of CA II and CA IX, two physiologically important CA isoforms. The most potent inhibitory molecules against CA IX, 3g, 3h, and 3k, were studied to understand their binding modes via X-ray crystallography in adduct with CA II and CA IX-mimic. This research further adds to the field of CA inhibitors to better understand ligand selectivity between isoforms found in humans.


Inhibition pattern of sulfamide-related compounds in binding to carbonic anhydrase isoforms I, II, VII, XII and XIV.

  • Luciana Gavernet‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2013‎

A set of sulfamides and sulfamates were synthesized and tested against several isoforms of carbonic anhydrase: CA I, CA II, CA VII, CA XII and CA XIV. The biological assays showed a broad range of inhibitory activity, and interesting results were found for several compounds in terms of activity (Ki <1μm) and selectivity: some aromatic sulfamides are active against CA I, CA II and/or CA VII; while they are less active in CA XII and CA XIV. On the other hand, bulky sulfamides are selective to CA VII. To understand the origin of the different inhibitory activity against each isozyme we used molecular modeling techniques such as docking and molecular dynamic simulations.


Anion inhibition studies of the Zn(II)-bound ι-carbonic anhydrase from the Gram-negative bacterium Burkholderia territorii.

  • Andrea Petreni‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2021‎

Burkholderia territorii, a Gram-negative bacterium, encodes for the ι-class carbonic anhydrase (CA, EC 4.2.1.1) BteCAι, which was recently characterised. It acts as a good catalyst for the hydration of CO2 to bicarbonate and protons, with a kcat value of 3.0 × 105 s-1 and kcat/KM value of 3.9 × 107 M-1 s-1. No inhibition data on this new class of enzymes are available to date. We report here an anion and small molecules inhibition study of BteCAι, which we prove to be a zinc(II)- and not manganese(II)-containing enzyme, as reported for diatom ι-CAs. The best inhibitors were sulphamic acid, stannate, phenylarsonic acid, phenylboronic acid and sulfamide (KI values of 6.2-94 µM), whereas diethyldithiocarbamate, tellurate, selenate, bicarbonate and cyanate were submillimolar inhibitors (KI values of 0.71-0.94 mM). The halides (except iodide), thiocyanate, nitrite, nitrate, carbonate, bisulphite, sulphate, hydrogensulfide, peroxydisulfate, selenocyanate, fluorosulfonate and trithiocarbonate showed KI values in the range of 3.1-9.3 mM.


Antihistamines, phenothiazine-based antipsychotics, and tricyclic antidepressants potently activate pharmacologically relevant human carbonic anhydrase isoforms II and VII.

  • Francesco Fiorentino‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2023‎

Carbonic anhydrases (CAs) are important regulators of pH homeostasis and participate in many physiological and pathological processes. CA activators (CAAs) are becoming increasingly important in the biomedical field since enhancing CA activity may have beneficial effects at neurological level. Here, we investigate selected antihistamines, phenothiazine-based antipsychotics, and tricyclic antidepressants (TCAs) as potential activators of human CAs I, II, IV, and VII. Our findings indicate that these compounds are more effective at activating hCA II and VII compared to hCA I and IV. Overall, hCA VII was the most efficiently activated isoform, particularly by phenothiazines and TCAs. This is especially relevant since hCA VII is the most abundant isoform in the central nervous system (CNS) and is implicated in neuronal signalling and bicarbonate balance regulation. This study offers additional insights into the pharmacological profiles of clinically employed drugs and sets the ground for the development of novel optimised CAAs.


Synthesis and biological evaluation of histamine Schiff bases as carbonic anhydrase I, II, IV, VII, and IX activators.

  • Suleyman Akocak‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2017‎

A series of 20 histamine Schiff base was synthesised by reaction of histamine, a well known carbonic anhydrase (CA, E.C 4.2.2.1.) activator pharmacophore, with substituted aldehydes. The obtained histamine Schiff bases were assayed as activators of five selected human (h) CA isozymes, the cytosolic hCA I, hCA II, and hCA VII, the membrane-anchored hCA IV and transmembrane hCA IX. Some of these compounds showed efficient activity (in the nanomolar range) against the cytosolic isoform hCA VII, which is a key CA enzyme involved in brain metabolism. Moderate activity was observed against hCA I and hCA IV (in the nanomolar to low micromolar range). The structure-activity relationship for activation of these isoforms with the new histamine Schiff bases is discussed in detail based on the nature of the aliphatic, aromatic, or heterocyclic moiety present in the aldehyde fragment of the molecule, which may participate in diverse interactions with amino acid residues at the entrance of the active site, where activators bind, and which is the most variable part among the different CA isoforms.


Chromene-Containing Aromatic Sulfonamides with Carbonic Anhydrase Inhibitory Properties.

  • Andrea Angeli‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the essential reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. A series of chromene-based sulfonamides were synthesized and tested as possible CA inhibitors. Their inhibitory activity was assessed against the cytosolic human isoforms hCA I, hCA II and the transmembrane hCA IX and XII. Several of the investigated derivatives showed interesting inhibition activity towards the tumor associate isoforms hCA IX and hCA XII. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds, within the active site of hCA IX.


Sulfamide derivatives with selective carbonic anhydrase VII inhibitory action.

  • Maria Luisa Villalba‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2016‎

A set of N,N'-disubstituted sulfamides and sodium cyclamate have been tested for their inhibitory action against six isoforms of carbonic anhydrase (CA, EC 4.2.1.1) found in the brain, that is, CA I, CA II, CA VII, CA IX, CA XII and CA XIV, some of which are involved in epileptogenesis. The biological data showed interesting results for CA VII inhibition, the isozyme thought to be a novel antiepileptic target. Strong CA VII inhibitors, with Ki values in the low nanomolar-subnanomolar range were identified. Some of these derivatives showed selectivity for inhibition of CA VII versus the ubiquitous isoform CA II, for which the Ki values were in the micromolar range. Molecular modeling approaches were employed to understand the binding interactions between these compounds and the two CA isoforms, since the mechanism of action of such disubstituted sulfamides was not yet investigated by means of X-ray crystallography.


Coumarins inhibit η-class carbonic anhydrase from Plasmodium falciparum.

  • Simone Giovannuzzi‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2022‎

Coumarins were discovered to act as inhibitors of α-carbonic anhydrases (CAs, EC 4.2.1.1) after undergoing hydrolysis mediated by the esterase activity of the enzyme to the corresponding 2-hydroxycinnamic acids. Other classes of CAs among the eight currently known do not possess esterase activity or this activity was poorly investigated. Hence, we decided to look at the potential of coumarins as inhibitors of the η-CA from the malaria-producing protozoan Plasmodium falciparum, PfaCA. A panel of simple coumarins incorporating hydroxyl, amino, ketone or carboxylic acid ester moieties in various positions of the ring system acted as low to medium micromolar PfaCA inhibitors, whereas their affinities for the cytosolic off-target human isoforms hCA I and II were in a much higher range. Thus, we confirm that η-CAs possess esterase activity and that coumarins effectively inhibit this enzyme. Elaboration of the simple coumarin scaffolds investigated here may probably lead to more effective PfaCA inhibitors.


Synthesis of novel acridine bis-sulfonamides with effective inhibitory activity against the carbonic anhydrase isoforms I, II, IX and XII.

  • İbrahim Esirden‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2015‎

By using a multi component reaction system (MCR), nitro acridine sulfonamides were obtained from cyclic-1,3-diketones, 4-aminobenzene sulfonamide and aromatic aldehydes. Some novel acridine bis-sulfonamides 6a-l were then synthesized by the reaction between sulfonyl chlorides and the novel amino-acridine sulfonamides 5a and 5b, obtained by reduction of nitro-acridine sulfonamide derivatives 4a and 4b. The newly synthesized compounds were investigated as inhibitors of 4 human carbonic anhydrase isoforms (hCA, EC 4.2.1.1). Several of the compounds showed low micromolar inhibition against the medically relevant isoforms hCA I, II, IX, and XII.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: