Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 288 papers

Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources.

  • Stephen K Dolan‎ et al.
  • mBio‎
  • 2020‎

Pseudomonas aeruginosa is an opportunistic human pathogen, particularly noted for causing infections in the lungs of people with cystic fibrosis (CF). Previous studies have shown that the gene expression profile of P. aeruginosa appears to converge toward a common metabolic program as the organism adapts to the CF airway environment. However, we still have only a limited understanding of how these transcriptional changes impact metabolic flux at the systems level. To address this, we analyzed the transcriptome, proteome, and fluxome of P. aeruginosa grown on glycerol or acetate. These carbon sources were chosen because they are the primary breakdown products of an airway surfactant, phosphatidylcholine, which is known to be a major carbon source for P. aeruginosa in CF airways. We show that the fluxes of carbon throughout central metabolism are radically different among carbon sources. For example, the newly recognized "EDEMP cycle" (which incorporates elements of the Entner-Doudoroff [ED] pathway, the Embden-Meyerhof-Parnas [EMP] pathway, and the pentose phosphate [PP] pathway) plays an important role in supplying NADPH during growth on glycerol. In contrast, the EDEMP cycle is attenuated during growth on acetate, and instead, NADPH is primarily supplied by the reaction catalyzed by isocitrate dehydrogenase(s). Perhaps more importantly, our proteomic and transcriptomic analyses revealed a global remodeling of gene expression during growth on the different carbon sources, with unanticipated impacts on aerobic denitrification, electron transport chain architecture, and the redox economy of the cell. Collectively, these data highlight the remarkable metabolic plasticity of P. aeruginosa; that plasticity allows the organism to seamlessly segue between different carbon sources, maximizing the energetic yield from each.IMPORTANCEPseudomonas aeruginosa is an opportunistic human pathogen that is well known for causing infections in the airways of people with cystic fibrosis. Although it is clear that P. aeruginosa is metabolically well adapted to life in the CF lung, little is currently known about how the organism metabolizes the nutrients available in the airways. In this work, we used a combination of gene expression and isotope tracer ("fluxomic") analyses to find out exactly where the input carbon goes during growth on two CF-relevant carbon sources, acetate and glycerol (derived from the breakdown of lung surfactant). We found that carbon is routed ("fluxed") through very different pathways during growth on these substrates and that this is accompanied by an unexpected remodeling of the cell's electron transfer pathways. Having access to this "blueprint" is important because the metabolism of P. aeruginosa is increasingly being recognized as a target for the development of much-needed antimicrobial agents.


Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in Fremyella diplosiphon.

  • Brandon A Rohnke‎ et al.
  • mBio‎
  • 2020‎

Cyanobacteria use a carbon dioxide (CO2)-concentrating mechanism (CCM) that enhances their carbon fixation efficiency and is regulated by many environmental factors that impact photosynthesis, including carbon availability, light levels, and nutrient access. Efforts to connect the regulation of the CCM by these factors to functional effects on carbon assimilation rates have been complicated by the aqueous nature of cyanobacteria. Here, we describe the use of cyanobacteria in a semiwet state on glass fiber filtration discs-cyanobacterial discs-to establish dynamic carbon assimilation behavior using gas exchange analysis. In combination with quantitative PCR (qPCR) and transmission electron microscopy (TEM) analyses, we linked the regulation of CCM components to corresponding carbon assimilation behavior in the freshwater, filamentous cyanobacterium Fremyella diplosiphon Inorganic carbon (Ci) levels, light quantity, and light quality have all been shown to influence carbon assimilation behavior in F. diplosiphon Our results suggest a biphasic model of cyanobacterial carbon fixation. While behavior at low levels of CO2 is driven mainly by the Ci uptake ability of the cyanobacterium, at higher CO2 levels, carbon assimilation behavior is multifaceted and depends on Ci availability, carboxysome morphology, linear electron flow, and cell shape. Carbon response curves (CRCs) generated via gas exchange analysis enable rapid examination of CO2 assimilation behavior in cyanobacteria and can be used for cells grown under distinct conditions to provide insight into how CO2 assimilation correlates with the regulation of critical cellular functions, such as the environmental control of the CCM and downstream photosynthetic capacity.IMPORTANCE Environmental regulation of photosynthesis in cyanobacteria enhances organismal fitness, light capture, and associated carbon fixation under dynamic conditions. Concentration of carbon dioxide (CO2) near the carbon-fixing enzyme RubisCO occurs via the CO2-concentrating mechanism (CCM). The CCM is also tuned in response to carbon availability, light quality or levels, or nutrient access-cues that also impact photosynthesis. We adapted dynamic gas exchange methods generally used with plants to investigate environmental regulation of the CCM and carbon fixation capacity using glass fiber-filtered cells of the cyanobacterium Fremyella diplosiphon We describe a breakthrough in measuring real-time carbon uptake and associated assimilation capacity for cells grown in distinct conditions (i.e., light quality, light quantity, or carbon status). These measurements demonstrate that the CCM modulates carbon uptake and assimilation under low-Ci conditions and that light-dependent regulation of pigmentation, cell shape, and downstream stages of carbon fixation are critical for tuning carbon uptake and assimilation.


Aggregation of Nontuberculous Mycobacteria Is Regulated by Carbon-Nitrogen Balance.

  • William H DePas‎ et al.
  • mBio‎
  • 2019‎

Nontuberculous mycobacteria (NTM) are emerging opportunistic pathogens that colonize household water systems and cause chronic lung infections in susceptible patients. The ability of NTM to form surface-attached biofilms in the nonhost environment and corded aggregates in vivo is important to their ability to persist in both contexts. Underlying the development of these multicellular structures is the capacity of mycobacterial cells to adhere to one another. Unlike most other bacteria, NTM spontaneously and constitutively aggregate in vitro, hindering our ability to understand the transition between planktonic and aggregated cells. While culturing a model NTM, Mycobacterium smegmatis, in rich medium, we fortuitously discovered that planktonic cells accumulate after ∼3 days of growth. By providing selective pressure for bacteria that disperse earlier, we isolated a strain with two mutations in the oligopeptide permease operon (opp). A mutant lacking the opp operon (Δopp) disperses earlier than wild type (WT) due to a defect in nutrient uptake. Experiments with WT M. smegmatis revealed that growth as aggregates is favored when carbon is replete, but under conditions of low available carbon relative to available nitrogen, M. smegmatis grows as planktonic cells. By adjusting carbon and nitrogen sources in defined medium, we tuned the cellular C/N ratio such that M. smegmatis grows either as aggregates or as planktonic cells. C/N-mediated aggregation regulation is widespread among NTM with the possible exception of rough-colony Mycobacterium abscessus isolates. Altogether, we show that NTM aggregation is a controlled process that is governed by the relative availability of carbon and nitrogen for metabolism.IMPORTANCE Free-living bacteria can assemble into multicellular structures called biofilms. Biofilms help bacteria tolerate multiple stresses, including antibiotics and the host immune system. Nontuberculous mycobacteria are a group of emerging opportunistic pathogens that utilize biofilms to adhere to household plumbing and showerheads and to avoid phagocytosis by host immune cells. Typically, bacteria regulate biofilm formation by controlling expression of adhesive structures to attach to surfaces and other bacterial cells. Mycobacteria harbor a unique cell wall built chiefly of long-chain mycolic acids that confers hydrophobicity and has been thought to cause constitutive aggregation in liquid media. Here we show that aggregation is instead a regulated process dictated by the balance of available carbon and nitrogen. Understanding that mycobacteria utilize metabolic cues to regulate the transition between planktonic and aggregated cells reveals an inroad to controlling biofilm formation through targeted therapeutics.


CceR and AkgR regulate central carbon and energy metabolism in alphaproteobacteria.

  • Saheed Imam‎ et al.
  • mBio‎
  • 2015‎

Many pathways of carbon and energy metabolism are conserved across the phylogeny, but the networks that regulate their expression or activity often vary considerably among organisms. In this work, we show that two previously uncharacterized transcription factors (TFs) are direct regulators of genes encoding enzymes of central carbon and energy metabolism in the alphaproteobacterium Rhodobacter sphaeroides. The LacI family member CceR (RSP_1663) directly represses genes encoding enzymes in the Entner-Doudoroff pathway, while activating those encoding the F1F0 ATPase and enzymes of the tricarboxylic acid (TCA) cycle and gluconeogenesis, providing a direct transcriptional network connection between carbon and energy metabolism. We identified bases that are important for CceR DNA binding and showed that DNA binding by this TF is inhibited by 6-phosphogluconate. We also showed that the GntR family TF AkgR (RSP_0981) directly activates genes encoding several TCA cycle enzymes, and we identified conditions where its activity is increased. The properties of single and double ΔCceR and ΔAkgR mutants illustrate that these 2 TFs cooperatively regulate carbon and energy metabolism. Comparative genomic analysis indicates that CceR and AkgR orthologs are found in other alphaproteobacteria, where they are predicted to have a conserved function in regulating central carbon metabolism. Our characterization of CceR and AkgR has provided important new insight into the networks that control central carbon and energy metabolism in alphaproteobacteria that can be exploited to modify or engineer new traits in these widespread and versatile bacteria.


Gene Dispensability in Escherichia coli Grown in Thirty Different Carbon Environments.

  • Madeline Tong‎ et al.
  • mBio‎
  • 2020‎

Central metabolism is a topic that has been studied for decades, and yet, this process is still not fully understood in Escherichia coli, perhaps the most amenable and well-studied model organism in biology. To further our understanding, we used a high-throughput method to measure the growth kinetics of each of 3,796 E. coli single-gene deletion mutants in 30 different carbon sources. In total, there were 342 genes (9.01%) encompassing a breadth of biological functions that showed a growth phenotype on at least 1 carbon source, demonstrating that carbon metabolism is closely linked to a large number of processes in the cell. We identified 74 genes that showed low growth in 90% of conditions, defining a set of genes which are essential in nutrient-limited media, regardless of the carbon source. The data are compiled into a Web application, Carbon Phenotype Explorer (CarPE), to facilitate easy visualization of growth curves for each mutant strain in each carbon source. Our experimental data matched closely with the predictions from the EcoCyc metabolic model which uses flux balance analysis to predict growth phenotypes. From our comparisons to the model, we found that, unexpectedly, phosphoenolpyruvate carboxylase (ppc) was required for robust growth in most carbon sources other than most trichloroacetic acid (TCA) cycle intermediates. We also identified 51 poorly annotated genes that showed a low growth phenotype in at least 1 carbon source, which allowed us to form hypotheses about the functions of these genes. From this list, we further characterized the ydhC gene and demonstrated its role in adenosine efflux.IMPORTANCE While there has been much study of bacterial gene dispensability, there is a lack of comprehensive genome-scale examinations of the impact of gene deletion on growth in different carbon sources. In this context, a lot can be learned from such experiments in the model microbe Escherichia coli where much is already understood and there are existing tools for the investigation of carbon metabolism and physiology (1). Gene deletion studies have practical potential in the field of antibiotic drug discovery where there is emerging interest in bacterial central metabolism as a target for new antibiotics (2). Furthermore, some carbon utilization pathways have been shown to be critical for initiating and maintaining infection for certain pathogens and sites of infection (3-5). Here, with the use of high-throughput solid medium phenotyping methods, we have generated kinetic growth measurements for 3,796 genes under 30 different carbon source conditions. This data set provides a foundation for research that will improve our understanding of genes with unknown function, aid in predicting potential antibiotic targets, validate and advance metabolic models, and help to develop our understanding of E. coli metabolism.


Carbon Use Efficiency and Its Temperature Sensitivity Covary in Soil Bacteria.

  • Grace Pold‎ et al.
  • mBio‎
  • 2020‎

The strategy that microbial decomposers take with respect to using substrate for growth versus maintenance is one essential biological determinant of the propensity of carbon to remain in soil. To quantify the environmental sensitivity of this key physiological trade-off, we characterized the carbon use efficiency (CUE) of 23 soil bacterial isolates across seven phyla at three temperatures and with up to four substrates. Temperature altered CUE in both an isolate-specific manner and a substrate-specific manner. We searched for genes correlated with the temperature sensitivity of CUE on glucose and deemed those functional genes which were similarly correlated with CUE on other substrates to be validated as markers of CUE. Ultimately, we did not identify any such robust functional gene markers of CUE or its temperature sensitivity. However, we found a positive correlation between rRNA operon copy number and CUE, opposite what was expected. We also found that inefficient taxa increased their CUE with temperature, while those with high CUE showed a decrease in CUE with temperature. Together, our results indicate that CUE is a flexible parameter within bacterial taxa and that the temperature sensitivity of CUE is better explained by observed physiology than by genomic composition across diverse taxa. We conclude that the bacterial CUE response to temperature and substrate is more variable than previously thought.IMPORTANCE Soil microbes respond to environmental change by altering how they allocate carbon to growth versus respiration-or carbon use efficiency (CUE). Ecosystem and Earth System models, used to project how global soil C stocks will continue to respond to the climate crisis, often assume that microbes respond homogeneously to changes in the environment. In this study, we quantified how CUE varies with changes in temperature and substrate quality in soil bacteria and evaluated why CUE characteristics may differ between bacterial isolates and in response to altered growth conditions. We found that bacterial taxa capable of rapid growth were more efficient than those limited to slow growth and that taxa with high CUE were more likely to become less efficient at higher temperatures than those that were less efficient to begin with. Together, our results support the idea that the CUE temperature response is constrained by both growth rate and CUE and that this partly explains how bacteria acclimate to a warming world.


Microbial Functional Responses Explain Alpine Soil Carbon Fluxes under Future Climate Scenarios.

  • Qi Qi‎ et al.
  • mBio‎
  • 2021‎

Soil microorganisms are sensitive to temperature in cold ecosystems, but it remains unclear how microbial responses are modulated by other important climate drivers, such as precipitation changes. Here, we examine the effects of six in situ warming and/or precipitation treatments in alpine grasslands on microbial communities, plants, and soil carbon fluxes. These treatments differentially affected soil carbon fluxes, gross primary production, and microbial communities. Variations of soil CO2 and CH4 fluxes across all sites significantly (r > 0.70, P < 0.050) correlated with relevant microbial functional abundances but not bacterial or fungal abundances. Given tight linkages between microbial functional traits and ecosystem functionality, we conclude that future soil carbon fluxes in alpine grasslands can be predicted by microbial carbon-degrading capacities.IMPORTANCE The warming pace in the Tibetan Plateau, which is predominantly occupied by grassland ecosystems, has been 0.2°C per decade in recent years, dwarfing the rate of global warming by a factor of 2. Many Earth system models project substantial carbon sequestration in Tibet, which has been observed. Here, we analyzed microbial communities under projected climate changes by 2100. As the soil "carbon pump," the growth and activity of microorganisms can largely influence soil carbon dynamics. However, microbial gene response to future climate scenarios is still obscure. We showed that the abundances of microbial functional genes, but not microbial taxonomy, were correlated with carbon fluxes and ecosystem multifunctionality. By identifying microbial traits linking to ecosystem functioning, our results can guide the assessment of future soil carbon fluxes in alpine grasslands, a critical step toward mitigating climate changes.


Top-Down, Knowledge-Based Genetic Reduction of Yeast Central Carbon Metabolism.

  • Eline D Postma‎ et al.
  • mBio‎
  • 2022‎

Saccharomyces cerevisiae, whose evolutionary past includes a whole-genome duplication event, is characterized by a mosaic genome configuration with substantial apparent genetic redundancy. This apparent redundancy raises questions about the evolutionary driving force for genomic fixation of "minor" paralogs and complicates modular and combinatorial metabolic engineering strategies. While isoenzymes might be important in specific environments, they could be dispensable in controlled laboratory or industrial contexts. The present study explores the extent to which the genetic complexity of the central carbon metabolism (CCM) in S. cerevisiae, here defined as the combination of glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, and a limited number of related pathways and reactions, can be reduced by elimination of (iso)enzymes without major negative impacts on strain physiology. Cas9-mediated, groupwise deletion of 35 of the 111 genes yielded a "minimal CCM" strain which, despite the elimination of 32% of CCM-related proteins, showed only a minimal change in phenotype on glucose-containing synthetic medium in controlled bioreactor cultures relative to a congenic reference strain. Analysis under a wide range of other growth and stress conditions revealed remarkably few phenotypic changes from the reduction of genetic complexity. Still, a well-documented context-dependent role of GPD1 in osmotolerance was confirmed. The minimal CCM strain provides a model system for further research into genetic redundancy of yeast genes and a platform for strategies aimed at large-scale, combinatorial remodeling of yeast CCM. IMPORTANCE Fundamental questions regarding the minimal requirements for life have prompted scientists to embark on top-down efforts to reduce microbial genomes to the minimum set of genes and proteins necessary to sustain cell survival and division. While these efforts are generally focused on small, prokaryotic genomes, Saccharomyces cerevisiae, a popular industrial and model organism, has a typical eukaryotic genome characterized by a high genetic redundancy. The cellular function of redundant genes is generally poorly understood and is often investigated at the scale of a few genes. In this study, we explore genetic redundancy at large scale, encompassing the ~100 genes involved in central carbon metabolism, a part of metabolism essential for life and highly conserved among eukaryotes. This study reveals the remarkable resilience of this model eukaryote, as it was hardly affected, under a broad range of conditions, by a 32% reduction of its central carbon metabolism.


Carbon Catabolite Repression Governs Diverse Physiological Processes and Development in Aspergillus nidulans.

  • Yingying Chen‎ et al.
  • mBio‎
  • 2021‎

Carbon catabolite repression (CCR) is a common phenomenon of microorganisms that enable efficient utilization of carbon nutrients, critical for the fitness of microorganisms in the wild and for pathogenic species to cause infection. In most filamentous fungal species, the conserved transcription factor CreA/Cre1 mediates CCR. Previous studies demonstrated a primary function for CreA/Cre1 in carbon metabolism; however, the phenotype of creA/cre1 mutants indicated broader roles. The global function and regulatory mechanism of this wide-domain transcription factor has remained elusive. Here, we applied two powerful genomics methods (transcriptome sequencing and chromatin immunoprecipitation sequencing) to delineate the direct and indirect roles of Aspergillus nidulans CreA across diverse physiological processes, including secondary metabolism, iron homeostasis, oxidative stress response, development, N-glycan biosynthesis, unfolded protein response, and nutrient and ion transport. The results indicate intricate connections between the regulation of carbon metabolism and diverse cellular functions. Moreover, our work also provides key mechanistic insights into CreA regulation and identifies CreA as a master regulator controlling many transcription factors of different regulatory networks. The discoveries for this highly conserved transcriptional regulator in a model fungus have important implications for CCR in related pathogenic and industrial species. IMPORTANCE The ability to scavenge and use a wide range of nutrients for growth is crucial for microorganisms' survival in the wild. Carbon catabolite repression (CCR) is a transcriptional regulatory phenomenon of both bacteria and fungi to coordinate the expression of genes required for preferential utilization of carbon sources. Since carbon metabolism is essential for growth, CCR is central to the fitness of microorganisms. In filamentous fungi, CCR is mediated by the conserved transcription factor CreA/Cre1, whose function in carbon metabolism has been well established. However, the global roles and regulatory mechanism of CreA/Cre1 are poorly defined. This study uncovers the direct and indirect functions of CreA in the model organism Aspergillus nidulans over diverse physiological processes and development and provides mechanistic insights into how CreA controls different regulatory networks. The work also reveals an interesting functional divergence between filamentous fungal and yeast CreA/Cre1 orthologues.


Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.

  • Toshiyuki Ueki‎ et al.
  • mBio‎
  • 2014‎

Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. Importance: The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors for C. ljungdahlii include carbon monoxide, which can be derived from industrial waste gases or the conversion of recalcitrant biomass to syngas, as well as hydrogen, another syngas component. The finding that carbon and electron flow in C. ljungdahlii can be diverted from the production of acetate to butyrate synthesis is an important step toward the goal of renewable commodity production from carbon dioxide with this organism.


Amino Acid Catabolism in Staphylococcus aureus and the Function of Carbon Catabolite Repression.

  • Cortney R Halsey‎ et al.
  • mBio‎
  • 2017‎

Staphylococcus aureus must rapidly adapt to a variety of carbon and nitrogen sources during invasion of a host. Within a staphylococcal abscess, preferred carbon sources such as glucose are limiting, suggesting that S. aureus survives through the catabolism of secondary carbon sources. S. aureus encodes pathways to catabolize multiple amino acids, including those that generate pyruvate, 2-oxoglutarate, and oxaloacetate. To assess amino acid catabolism, S. aureus JE2 and mutants were grown in complete defined medium containing 18 amino acids but lacking glucose (CDM). A mutation in the gudB gene, coding for glutamate dehydrogenase, which generates 2-oxoglutarate from glutamate, significantly reduced growth in CDM, suggesting that glutamate and those amino acids generating glutamate, particularly proline, serve as the major carbon source in this medium. Nuclear magnetic resonance (NMR) studies confirmed this supposition. Furthermore, a mutation in the ackA gene, coding for acetate kinase, also abrogated growth of JE2 in CDM, suggesting that ATP production from pyruvate-producing amino acids is also critical for growth. In addition, although a functional respiratory chain was absolutely required for growth, the oxygen consumption rate and intracellular ATP concentration were significantly lower during growth in CDM than during growth in glucose-containing media. Finally, transcriptional analyses demonstrated that expression levels of genes coding for the enzymes that synthesize glutamate from proline, arginine, and histidine are repressed by CcpA and carbon catabolite repression. These data show that pathways important for glutamate catabolism or ATP generation via Pta/AckA are important for growth in niches where glucose is not abundant, such as abscesses within skin and soft tissue infections.IMPORTANCES. aureus is a significant cause of both morbidity and mortality worldwide. This bacterium causes infections in a wide variety of organ systems, the most common being skin and soft tissue. Within a staphylococcal abscess, levels of glucose, a preferred carbon source, are limited due to the host immune response. Therefore, S. aureus must utilize other available carbon sources such as amino acids or peptides to proliferate. Our results show that glutamate and amino acids that serve as substrates for glutamate synthesis, particularly proline, function as major carbon sources during growth, whereas other amino acids that generate pyruvate are important for ATP synthesis via substrate-level phosphorylation in the Pta-AckA pathway. Our data support a model whereby certain amino acid catabolic pathways, and acquisition of those particular amino acids, are crucial for growth in niches where glucose is not abundant.


Novel Autotrophic Organisms Contribute Significantly to the Internal Carbon Cycling Potential of a Boreal Lake.

  • Sari Peura‎ et al.
  • mBio‎
  • 2018‎

Oxygen-stratified lakes are typical for the boreal zone and also a major source of greenhouse gas emissions in the region. Due to shallow light penetration, restricting the growth of phototrophic organisms, and large allochthonous organic carbon inputs from the catchment area, the lake metabolism is expected to be dominated by heterotrophic organisms. In this study, we test this assumption and show that the potential for autotrophic carbon fixation and internal carbon cycling is high throughout the water column. Further, we show that during the summer stratification carbon fixation can exceed respiration in a boreal lake even below the euphotic zone. Metagenome-assembled genomes and 16S profiling of a vertical transect of the lake revealed multiple organisms in an oxygen-depleted compartment belonging to novel or poorly characterized phyla. Many of these organisms were chemolithotrophic, potentially deriving their energy from reactions related to sulfur, iron, and nitrogen transformations. The community, as well as the functions, was stratified along the redox gradient. The autotrophic potential in the lake metagenome below the oxygenic zone was high, pointing toward a need for revising our concepts of internal carbon cycling in boreal lakes. Further, the importance of chemolithoautotrophy for the internal carbon cycling suggests that many predicted climate change-associated fluctuations in the physical properties of the lake, such as altered mixing patterns, likely have consequences for the whole-lake metabolism even beyond the impact to the phototrophic community.IMPORTANCE Autotrophic organisms at the base of the food web are the only life form capable of turning inorganic carbon into the organic form, facilitating the survival of all other organisms. In certain environments, the autotrophic production is limited by environmental conditions and the food web is supported by external carbon inputs. One such environment is stratified boreal lakes, which are one of the biggest natural sources of greenhouse gas emissions in the boreal region. Thus, carbon cycling in these habitats is of utmost importance for the future climate. Here, we demonstrate a high potential for internal carbon cycling via phototrophic and novel chemolithotrophic organisms in the anoxic, poorly illuminated layers of a boreal lake. Our results significantly increase our knowledge on the microbial communities and their metabolic potential in oxygen-depleted freshwaters and help to understand and predict how climate change-induced alterations could impact the lake carbon dynamics.


Multiple Alternative Carbon Pathways Combine To Promote Candida albicans Stress Resistance, Immune Interactions, and Virulence.

  • Robert B Williams‎ et al.
  • mBio‎
  • 2020‎

The phagocytic cells of the innate immune system are an essential first line of antimicrobial defense, and yet Candida albicans, one of the most problematic fungal pathogens, is capable of resisting the stresses imposed by the macrophage phagosome, eventually resulting in the destruction of the phagocyte. C. albicans rapidly adapts to the phagosome by upregulating multiple alternative carbon utilization pathways, particularly those for amino acids, carboxylic acids, and N-acetylglucosamine (GlcNAc). Here, we report that C. albicans recognizes these carbon sources both as crucial nutrients and as independent signals in its environment. Even in the presence of glucose, each carbon source promotes increased resistance to a unique profile of stressors; lactate promotes increased resistance to osmotic and cell wall stresses, amino acids increased resistance to oxidative and nitrosative stresses, and GlcNAc increased resistance to oxidative stress and caspofungin, while all three alternative carbon sources have been shown to induce resistance to fluconazole. Moreover, we show mutants incapable of utilizing these carbon sources, in particular, strains engineered to be defective in all three pathways, are significantly attenuated in both macrophage and mouse models, with additive effects observed as multiple carbon pathways are eliminated, suggesting that C. albicans simultaneously utilizes multiple carbon sources within the macrophage phagosome and during disseminated candidiasis. Taking the data together, we propose that, in addition to providing energy to the pathogen within host environments, alternative carbon sources serve as niche-specific priming signals that allow C. albicans to recognize microenvironments within the host and to prepare for stresses associated with that niche, thus promoting host adaptation and virulence.IMPORTANCECandida albicans is a fungal pathogen and a significant cause of morbidity and mortality, particularly in people with defects, sometimes minor ones, in innate immunity. The phagocytes of the innate immune system, particularly macrophages and neutrophils, generally restrict this organism to its normal commensal niches, but C. albicans shows a robust and multifaceted response to these cell types. Inside macrophages, a key component of this response is the activation of multiple pathways for the utilization of alternative carbon sources, particularly amino acids, carboxylic acids, and N-acetylglucosamine. These carbon sources are key sources of energy and biomass but also independently promote stress resistance, induce cell wall alterations, and affect C. albicans interactions with macrophages. Engineered strains incapable of utilizing these alternative carbon pathways are attenuated in infection models. These data suggest that C. albicans recognizes nutrient composition as an indicator of specific host environments and tailors its responses accordingly.


Defining the Metabolic Pathways and Host-Derived Carbon Substrates Required for Francisella tularensis Intracellular Growth.

  • Lauren C Radlinski‎ et al.
  • mBio‎
  • 2018‎

Francisella tularensis is a Gram-negative, facultative, intracellular bacterial pathogen and one of the most virulent organisms known. A hallmark of F. tularensis pathogenesis is the bacterium's ability to replicate to high densities within the cytoplasm of infected cells in over 250 known host species, including humans. This demonstrates that F. tularensis is adept at modulating its metabolism to fluctuating concentrations of host-derived nutrients. The precise metabolic pathways and nutrients utilized by F. tularensis during intracellular growth, however, are poorly understood. Here, we use systematic mutational analysis to identify the carbon catabolic pathways and host-derived nutrients required for F. tularensis intracellular replication. We demonstrate that the glycolytic enzyme phosphofructokinase (PfkA), and thus glycolysis, is dispensable for F. tularensis SchuS4 virulence, and we highlight the importance of the gluconeogenic enzyme fructose 1,6-bisphosphatase (GlpX). We found that the specific gluconeogenic enzymes that function upstream of GlpX varied based on infection model, indicating that F. tularensis alters its metabolic flux according to the nutrients available within its replicative niche. Despite this flexibility, we found that glutamate dehydrogenase (GdhA) and glycerol 3-phosphate (G3P) dehydrogenase (GlpA) are essential for F. tularensis intracellular replication in all infection models tested. Finally, we demonstrate that host cell lipolysis is required for F. tularensis intracellular proliferation, suggesting that host triglyceride stores represent a primary source of glycerol during intracellular replication. Altogether, the data presented here reveal common nutritional requirements for a bacterium that exhibits characteristic metabolic flexibility during infection.IMPORTANCE The widespread onset of antibiotic resistance prioritizes the need for novel antimicrobial strategies to prevent the spread of disease. With its low infectious dose, broad host range, and high rate of mortality, F. tularensis poses a severe risk to public health and is considered a potential agent for bioterrorism. F. tularensis reaches extreme densities within the host cell cytosol, often replicating 1,000-fold in a single cell within 24 hours. This remarkable rate of growth demonstrates that F. tularensis is adept at harvesting and utilizing host cell nutrients. However, like most intracellular pathogens, the types of nutrients utilized by F. tularensis and how they are acquired is not fully understood. Identifying the essential pathways for F. tularensis replication may reveal new therapeutic strategies for targeting this highly infectious pathogen and may provide insight for improved targeting of intracellular pathogens in general.


Stimulated Organic Carbon Cycling and Microbial Community Shift Driven by a Simulated Cold-Seep Eruption.

  • Yongxin Lv‎ et al.
  • mBio‎
  • 2022‎

Cold seeps are a major methane source in marine systems, and microbe-mediated anaerobic oxidation of methane (AOM) serves as an effective barrier for preventing methane emissions from sediment to water. However, how the periodic eruption of cold seeps drives the microbial community shift and further affects carbon cycling has been largely neglected, mainly due to the technical challenge of analyzing the in situ communities undergoing such geological events. Using a continuously running high-pressure bioreactor to simulate these events, we found that under the condition of simulated eruptions, the abundance of AOM-related species decreased, and some methane was oxidized to methyl compounds to feed heterotrophs. The methanogenic archaeon Methanolobus replaced ANME-2a as the dominant archaeal group; moreover, the levels of methylotrophic bacteria, such as Pseudomonas, Halomonas, and Methylobacter, quickly increased, while those of sulfate-reducing bacteria decreased. According to the genomic analysis, Methylobacter played an important role in incomplete methane oxidation during eruptions; this process was catalyzed by the genes pmoABC under anaerobic conditions when the methane pressure was high, possibly generating organic carbon. Additionally, the findings showed that methyl compounds can also be released to the environment during methanogenesis and AOM under eruption conditions when the methane pressure is high. IMPORTANCE In the ocean, almost all of the emission and consumption of deeply buried methane occurs in cold seeps; therefore, understanding the methane cycling in cold seeps is crucial to estimating the oceanic methane budget. Cold-seep eruptions often lead to the dramatic destruction of microbial ecosystems that drive methane cycling. Because of technical challenges, the direct monitoring of these communities as well as the activity shifts during eruptions has never been achieved. In this study, we took an alternative approach by simulating cold-seep eruptions and using genome-resolved metagenomics to interpret the dynamic changes in the microbial community. The results show that the periodical cold-seep eruptions intensify organic carbon cycling, undermine the direct oxidation of methane to carbon dioxide, and drive microbial community shifts. These results further suggest that a more sophisticated calculation of the methane budget in cold seeps that considers their eruption status is needed.


Fungal organic acid uptake of mineral-derived K is dependent on distance from carbon hotspot.

  • Arunima Bhattacharjee‎ et al.
  • mBio‎
  • 2023‎

Fungal species are foundational members of soil ecosystems with vital contributions that support interspecies resource translocation. The minute details of these biogeochemical processes are poorly investigated. Here, we addressed this knowledge gap by probing fungal growth in a novel mineral-doped soil micromodel platform using spatially-resolved imaging methodologies. We found that fungi uptake K from K-rich minerals using organic acids exuded in a distance-dependent manner from a carbon-rich hotspot. While identification of specific mechanisms within soil remains challenging, our findings demonstrate the significance of reduced complexity platforms such as the mineral-doped micromodel in probing biogeochemical processes. These findings provide visualization into hyphal uptake and transport of mineral-derived nutrients in a resource-limited environment.


Carbon Catabolite Repression in Filamentous Fungi Is Regulated by Phosphorylation of the Transcription Factor CreA.

  • Leandro José de Assis‎ et al.
  • mBio‎
  • 2021‎

Filamentous fungi of the genus Aspergillus are of particular interest for biotechnological applications due to their natural capacity to secrete carbohydrate-active enzymes (CAZy) that target plant biomass. The presence of easily metabolizable sugars such as glucose, whose concentrations increase during plant biomass hydrolysis, results in the repression of CAZy-encoding genes in a process known as carbon catabolite repression (CCR), which is undesired for the purpose of large-scale enzyme production. To date, the C2H2 transcription factor CreA has been described as the major CC repressor in Aspergillus spp., although little is known about the role of posttranslational modifications in this process. In this work, phosphorylation sites were identified by mass spectrometry on Aspergillus nidulans CreA, and subsequently, the previously identified but uncharacterized site S262, the characterized site S319, and the newly identified sites S268 and T308 were chosen to be mutated to nonphosphorylatable residues before their effect on CCR was investigated. Sites S262, S268, and T308 are important for CreA protein accumulation and cellular localization, DNA binding, and repression of enzyme activities. In agreement with a previous study, site S319 was not important for several here-tested phenotypes but is key for CreA degradation and induction of enzyme activities. All sites were shown to be important for glycogen and trehalose metabolism. This study highlights the importance of CreA phosphorylation sites for the regulation of CCR. These sites are interesting targets for biotechnological strain engineering without the need to delete essential genes, which could result in undesired side effects.IMPORTANCE In filamentous fungi, the transcription factor CreA controls carbohydrate metabolism through the regulation of genes encoding enzymes required for the use of alternative carbon sources. In this work, phosphorylation sites were identified on Aspergillus nidulans CreA, and subsequently, the two newly identified sites S268 and T308, the previously identified but uncharacterized site S262, and the previously characterized site S319 were chosen to be mutated to nonphosphorylatable residues before their effect on CCR was characterized. Sites S262, S268, and T308 are important for CreA protein accumulation and cellular localization, DNA binding, and repression of enzyme activities. In agreement with a previous study, site S319 is not important for several here-tested phenotypes but is key for CreA degradation and induction of enzyme activities. This work characterized novel CreA phosphorylation sites under carbon catabolite-repressing conditions and showed that they are crucial for CreA protein turnover, control of carbohydrate utilization, and biotechnologically relevant enzyme production.


Influence of soil depth, irrigation, and plant genotype on the soil microbiome, metaphenome, and carbon chemistry.

  • Katherine I Naasko‎ et al.
  • mBio‎
  • 2023‎

Carbon is cycled through the air, plants, and belowground environment. Understanding soil carbon cycling in deep soil profiles will be important to mitigate climate change. Soil carbon cycling is impacted by water, plants, and soil microorganisms, in addition to soil mineralogy. Measuring biotic and abiotic soil properties provides a perspective of how soil microorganisms interact with the surrounding chemical environment. This study emphasizes the importance of considering biotic interactions with inorganic and oxidizable soil carbon in addition to total organic carbon in carbonate-containing soils for better informing soil carbon management decisions.


The Metabolite Repair Enzyme Phosphoglycolate Phosphatase Regulates Central Carbon Metabolism and Fosmidomycin Sensitivity in Plasmodium falciparum.

  • Laure Dumont‎ et al.
  • mBio‎
  • 2019‎

Members of the haloacid dehalogenase (HAD) family of metabolite phosphatases play an important role in regulating multiple pathways in Plasmodium falciparum central carbon metabolism. We show that the P. falciparum HAD protein, phosphoglycolate phosphatase (PGP), regulates glycolysis and pentose pathway flux in asexual blood stages via detoxifying the damaged metabolite 4-phosphoerythronate (4-PE). Disruption of the P. falciparumpgp gene caused accumulation of two previously uncharacterized metabolites, 2-phospholactate and 4-PE. 4-PE is a putative side product of the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase, and its accumulation inhibits the pentose phosphate pathway enzyme, 6-phosphogluconate dehydrogenase (6-PGD). Inhibition of 6-PGD by 4-PE leads to an unexpected feedback response that includes increased flux into the pentose phosphate pathway as a result of partial inhibition of upper glycolysis, with concomitant increased sensitivity to antimalarials that target pathways downstream of glycolysis. These results highlight the role of metabolite detoxification in regulating central carbon metabolism and drug sensitivity of the malaria parasite.IMPORTANCE The malaria parasite has a voracious appetite, requiring large amounts of glucose and nutrients for its rapid growth and proliferation inside human red blood cells. The host cell is resource rich, but this is a double-edged sword; nutrient excess can lead to undesirable metabolic reactions and harmful by-products. Here, we demonstrate that the parasite possesses a metabolite repair enzyme (PGP) that suppresses harmful metabolic by-products (via substrate dephosphorylation) and allows the parasite to maintain central carbon metabolism. Loss of PGP leads to the accumulation of two damaged metabolites and causes a domino effect of metabolic dysregulation. Accumulation of one damaged metabolite inhibits an essential enzyme in the pentose phosphate pathway, leading to substrate accumulation and secondary inhibition of glycolysis. This work highlights how the parasite coordinates metabolic flux by eliminating harmful metabolic by-products to ensure rapid proliferation in its resource-rich niche.


Morphological Plasticity in a Sulfur-Oxidizing Marine Bacterium from the SUP05 Clade Enhances Dark Carbon Fixation.

  • Vega Shah‎ et al.
  • mBio‎
  • 2019‎

Sulfur-oxidizing bacteria from the SUP05 clade are abundant in anoxic and oxygenated marine waters that appear to lack reduced sources of sulfur for cell growth. This raises questions about how these chemosynthetic bacteria survive across oxygen and sulfur gradients and how their mode of survival impacts the environment. Here, we use growth experiments, proteomics, and cryo-electron tomography to show that a SUP05 isolate, "Candidatus Thioglobus autotrophicus," is amorphous in shape and several times larger and stores considerably more intracellular sulfur when it respires oxygen. We also show that these cells can use diverse sources of reduced organic and inorganic sulfur at submicromolar concentrations. Enhanced cell size, carbon content, and metabolic activity of the aerobic phenotype are likely facilitated by a stabilizing surface-layer (S-layer) and an uncharacterized form of FtsZ-less cell division that supports morphological plasticity. The additional sulfur storage provides an energy source that allows cells to continue metabolic activity when exogenous sulfur sources are not available. This metabolic flexibility leads to the production of more organic carbon in the ocean than is estimated based solely on their anaerobic phenotype.IMPORTANCE Identifying shifts in microbial metabolism across redox gradients will improve efforts to model marine oxygen minimum zone (OMZ) ecosystems. Here, we show that aerobic morphology and metabolism increase cell size, sulfur storage capacity, and carbon fixation rates in "Ca Thioglobus autotrophicus," a chemosynthetic bacterium from the SUP05 clade that crosses oxic-anoxic boundaries.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: