Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 269 papers

Peroxymonosulfate improved photocatalytic degradation of atrazine by activated carbon/graphitic carbon nitride composite under visible light irradiation.

  • Jean Marie Dangwang Dikdim‎ et al.
  • Chemosphere‎
  • 2019‎

The photocatalytic degradation of atrazine by activated carbon/graphitic carbon nitride composites with peroxymonosulfate (PMS) was investigated under visible light irradiation. The photocatalysts were prepared at different activated carbon (AC) loaded percentages and characterized by XRD, FT-IR, BET surface area, SEM, UV-Vis absorbance, photocurrent response and EIS. Several parameters which might influence the degradation efficiency were studied including PMS concentration, solution pH, catalyst dosage, initial atrazine concentration as well as water matrix effect. The results indicated that incorporation of AC contributes effectively in suppressing the recombination of electron-holes pairs and enhancing the photocatalytic performance of graphitic carbon nitride. More significantly, the degradation efficiency of atrazine showed remarkable improvement with PMS addition under visible light irradiation. The reaction rate constant of the 10% AC/g-C3N4/Vis/PMS system (0.0376 min-1) was approximately 2.9 times higher than that of g-C3N4/Vis/PMS system (0.0128 min-1). Results from quenching tests revealed that both sulfate and hydroxyl radicals were involved in the degradation of atrazine, while the latter is the main contributor. This paper constitutes an insight for the metal-free catalyst activation of PMS by photocatalysis for environmental remediation.


Extending granular activated carbon (GAC) bed life: A column study of in-situ chemical regeneration of pesticide loaded activated carbon for water treatment.

  • Amanda Larasati‎ et al.
  • Chemosphere‎
  • 2022‎

In-situ chemical regeneration of granular activated carbon (GAC) may represent an advantageous alternative to conventional off-site thermal regeneration in water treatment applications. The performance of chemical regeneration of carbon exhausted by metaldehyde and isoproturon was investigated using rapid small-scale column tests, performed using a sequence of pesticide adsorption and chemical regeneration cycles with a novel alkaline-organic regenerant solution. A fresh regenerant solution was able to achieve 82% and 45% regeneration of carbon exhausted by metaldehyde and isoproturon, respectively. After the first regeneration, the performance declined slightly to 79%, and to 36% after the fourth regeneration. A comparison using a thermally regenerated (operational) carbon suggested that chemical regeneration was more beneficial for carbon exhausted by metaldehyde. The regenerant solution has a potential to be re-used multiple times, thereby minimizing the amount of waste chemicals generated. A series of carbon characterization tests showed that chemical regeneration did not alter the surface area, pore size distribution and surface chemistry of the carbon. As part of the evaluation, the adsorption thermodynamics of virgin and chemically regenerated carbons were determined using isothermal titration calorimetry to evaluate the adsorption behaviour of the pesticides on the carbon samples. The relatively high regeneration efficiency achieved by chemical regeneration, and minimal deleterious effect to the physico-chemical properties of the carbon, demonstrated the beneficial potential of this process as an alternative to conventional thermal regeneration of GAC.


Decomposition of ibuprofen in water via an electrochemical process with nano-sized carbon black-coated carbon cloth as oxygen-permeable cathode integrated with ultrasound.

  • Reza Darvishi Cheshmeh Soltani‎ et al.
  • Chemosphere‎
  • 2018‎

The main aim of the present investigation was the treatment of ibuprofen (IBP)-polluted aquatic phase using a novel oxygen-permeable cathode (OPC)-equipped electrochemical process (ECP) integrated with ultrasound (US). According to kinetic modeling, the decomposition rate of IBP by the integrated process was 3.2 × 10-2 min-1 which was significant in comparison with the OPC-equipped ECP (1.4 × 10-2 min-1) and US alone (2.4 × 10-3 min-1). Increasing the current resulted in the enhanced generation of H2O2 and consequently, improved the degradation of IBP in the solution. Excessive concentrations of Na2SO4 as supporting electrolyte led to no significant enhancement in the reactor efficiency. At initial IBP concentration of 1 mg L-1, complete removal of IBP with reaction rate of 1.7 × 10-1 min-1 was happened within a short reaction time of 30 min. The pulse mode of US led to more than 10% increase in the removal efficiency compared with the normal mode. The presence of scavenging compound of methanol caused the highest drop in the efficiency of the integrated treatment process, indicating the substantial role of free hydroxyl radicals in the degradation of IBP. Intermediate byproducts generated in the solution during the decomposition were also identified and interpreted.


High-performance carbon/MnO2 micromotors and their applications for pollutant removal.

  • Xu He‎ et al.
  • Chemosphere‎
  • 2019‎

The wide applications of particulate micromotors in practice, especially in the removal of environmental pollutants, have been limited by the low production yields and demand on high concentration of fuel such as H2O2. Carbon/MnO2 micromotors were made hydrothermally using different carbon allotropes including graphite, carbon nanotube (CNT), and graphene for treatment of methylene blue and toxic Ag ions. The obtained micromotors showed high speed of self-propulsion. The highest speed of MnO2-based micromotors to date was observed for CNT/MnO2 (>2 mm/s, 5 wt% H2O2, 0.5 wt% surfactant). Moreover, different from previous studies, even with low H2O2 concentration (0.5 wt%) and without surfactant addition, the micromotors could also be well dispersed in water by the O2 stream released from their reaction with H2O2. The carbon/MnO2 micromotors removed both methylene blue (>80%) and Ag ions (100%) effectively within 15 min by catalytic decomposition and adsorption. Especially high adsorption capacity of Ag (600 mg/g) was measured on graphite/MnO2 and graphene/MnO2 micromotors.


Hexavalent chromium adsorption from aqueous solution using carbon nano-onions (CNOs).

  • Chainarong Sakulthaew‎ et al.
  • Chemosphere‎
  • 2017‎

The capacity of carbon nano-onions (CNOs) to remove hexavalent chromium (Cr(VI)) from aqueous solution was investigated. Batch experiments were performed to quantify the effects of the dosage rate, pH, counter ions, and temperature. The adsorption of Cr(VI) onto CNOs was best described by a pseudo-second order rate expression. The adsorption efficiency increased with increasing adsorbent dosage and contact time and reached equilibrium in 24 h. The equilibrium data showed better compliance with a Langmuir isotherm than a Freundlich isotherm. Effective removal of Cr(VI) was demonstrated at pH values ranging from 2 to 10. The adsorption capacity of Cr(VI) was found to be highest (82%) at pH 3.4 and greatly depended on the solution pH. We found that Cr(VI) adsorption decreased with increasing pH over the pH range of 3.4-10. The adsorption capacity increased dramatically when the temperature increased from 10 °C to 50 °C regardless of the amount of CNOs used. Cr(VI) removal decreased by ∼13% when Zn(II), Cu(II), and Pb(II) were present, while there were no significant changes observed when NO3- or SO42- was present. The overall results support that CNOs can be used as an alternative adsorbent material to remove Cr(VI) in the water treatment industry.


Microplastics disrupt accurate soil organic carbon measurement based on chemical oxidation method.

  • Shin Woong Kim‎ et al.
  • Chemosphere‎
  • 2021‎

Microplastics are widespread contaminants in soils and terrestrial ecosystems in many areas worldwide. In this study, we measured soil organic carbon (SOC) and soil organic matter (SOM) in microplastic-treated soils to determine if the presence of microplastics could affect the accuracy of carbon-based soil quality indicator measurements. Six different sizes and types of microplastics were selected, and six soil samples were used to evaluate the impacts. Treating soil with polyethylene and low-density polyethylene significantly increased SOC (p < 0.05) when measured with the modified Walkley & Black method; microplastic addition (0.01%, v/v) increased SOC by >40% compared to control organic carbon-poor soil (<10.0 g kg-1). We conclude that the microplastics can disrupt the accurate measurement of SOC. Likely, the physicochemical treatment used in the SOC measurement process can cause the organic compounds and/or carbon complexes to be extracted from microplastics, and this can affect the results. Considering that SOC is a main indicator for assessing soil quality and the global carbon cycle, overestimations caused by microplastic contamination should be further discussed to identify appropriate ways to deal with microplastics as a new carbon source in the environment.


Electrochemical activation of peroxymonosulfate (PMS) by carbon cloth anode for sulfamethoxazole degradation.

  • Jingyi Fu‎ et al.
  • Chemosphere‎
  • 2022‎

Electrochemical activation of peroxymonosulfate (PMS) at carbon cloth anode (E (Carbon cloth Anode)/PMS system) was investigated for sulfamethoxazole (SMX) degradation. The results indicated that PMS could be activated at carbon cloth anode during electrolysis, resulting in the improvement of SMX degradation. The degradation efficiency of SMX was facilitated with the higher PMS concentration and current density, respectively. The degradation rate constant of SMX increased with the rising pH from 3.6 to 6.0, and reached the highest value at pH 6.0, and then decreased with further increasing pH to 8.0. The presence of chloride ion (Cl-, 5-100 mM) significantly enhanced SMX degradation, while addition of humic acid (HA, 1-5 mgC L-1) inhibited SMX degradation. Addition of carbonate (HCO3-, 5-20 mM) had a negligible impact on SMX degradation. Small amounts of phosphate (PO43-, 0-5 mM) could promote degradation, while a large amount of PO43- (10-20 mM) inhibited the degradation. Moreover, the quenching experiments demonstrated that sulfate radical (SO4·-), hydroxyl radical (·OH) and singlet oxygen (1O2) contributed to SMX degradation in E (Carbon cloth Anode)/PMS system. The degradation intermediates of SMX were identified by LC-MS/MS and the degradation pathways were deduced to be hydroxylation, the cleavage of S-N bond, and oxidation of aniline group. Moreover, the micronucleus test of Vicia faba root tips indicated that the E (Carbon Cloth Anode)/PMS system could reduce the genetic toxicity of SMX contaminated water to some extent.


Fate of weathered multi-walled carbon nanotubes in an aquatic sediment system.

  • Irina Politowski‎ et al.
  • Chemosphere‎
  • 2021‎

The widespread application of carbon nanotubes (CNT) in various consumer products leads to their inevitable release into aquatic systems. But only little is known about their distribution among aquatic compartments. In this study, we investigated the partitioning of radiolabeled, weathered multi-walled CNT (14C-wMWCNT) in an aquatic sediment system over a period of 180 days (d). The applied nanomaterial concentration in water phase was 100 μg L-1. Over time, the wMWCNT disappeared exponentially from the water phase and simultaneously accumulated in the sediment phase. After 2 h incubation just 77%, after seven days 30% and after 180 d only 0.03% of applied radioactivity (AR) remained in the water phase. The respective values for the disappearance times DT50 and DT90 were 3.2 d and 10.7 d. Further, minor mineralization of 14C-wMWCNT to 14CO2 was observed with values below 0.06% of AR. In addition, a study was carried out to estimate the deposition of wMWCNT in the water phase with and without sediment in the test system for 28 d. We found no influence of a sediment phase on the sedimentation behavior of wMWCNT in the water phase: After 6.5 d and 7.3 d 50% of the applied wMWCNT subsided in the presence and absence of sediment, respectively. The slow removal of wMWCNT from the water body by deposition into sediment implies that in addition to sediment-dwelling organisms, pelagic organisms are also at risk of exposure to nanomaterials and prone for their take-up.


Dissolved organic carbon drives nutrient cycling via microbial community in paddy soil.

  • Qingqing Wang‎ et al.
  • Chemosphere‎
  • 2021‎

Microbial mediated iron cycling drives the biogeochemical cycling of carbon, nitrogen, sulfur, and phosphorus. However, the fate of the microbial community and the relative metabolic pathways in paddy soil after the addition of biogas slurry are poorly understood. In this study, the response of functional genes was investigated by growing one-season rice in paddy soils in a pot experiment. Seven treatments were prepared: 1) control (CK); 2) organic carbon (OC); 3) fertilizer (F); 4) 5% of biogas slurry (B05); 5) 10% of biogas slurry (B10); 6) 15% of biogas slurry (B15); 7) 20% of biogas slurry (B20). In the biogas slurry treatments, Geobacter increased more than in the other treatments during rice growth, which were structured by TOC. Particularly, in the B10 treatment, the relative abundance of Geobacter was 1.6 and 14.8 times higher than that of CK at the heading and mature stages, respectively. At the heading stage, the addition of biogas slurry and OC shifted the microbial phosphorus-transformation communities differently. There were no significant differences in the carbon, nitrogen, and sulfur metabolic pathways between the two treatments. At the mature stage, the carbon: nitrogen: phosphorus balance was significantly influenced by the regulation of functional gene expression and metabolic activities. These findings provide insight into the key factors affecting carbon, nitrogen, sulfur, phosphorus, and iron during rice growth after carbon inputs.


High salinity leads to accumulation of soil organic carbon in mangrove soil.

  • Morimaru Kida‎ et al.
  • Chemosphere‎
  • 2017‎

Although mangrove forests are one of the most well-known soil organic carbon (SOC) sinks, the mechanism underlying SOC accumulation is relatively unknown. High net primary production (NPP) along with the typical bottom-heavy biomass allocation and low soil respiration (SR) have been considered to be responsible for SOC accumulation. However, an emerging paradigm postulates that SR is severely underestimated because of the leakage of dissolved inorganic carbon (DIC) in groundwater. Here we propose a simple yet unique mechanism for SOC accumulation in mangrove soils. We conducted sequential extraction of water extractable organic matter (WEOM) from mangrove soils using ultrapure water and artificial seawater, respectively. A sharp increase in humic substances (HS) concentration was observed only in the case of ultrapure water, along with a decline in salinity. Extracted WEOM was colloidal, and ≤70% of it re-precipitated by the addition of artificial seawater. These results strongly suggest that HS is selectively flocculated and maintained in the mangrove soils because of high salinity. Because sea salts are a characteristic of any mangrove forest, high salinity may be one of mechanisms underlying SOC accumulation in mangrove soils.


Impact of twenty pesticides on soil carbon microbial functions and community composition.

  • Jowenna X F Sim‎ et al.
  • Chemosphere‎
  • 2022‎

Pesticides are known to affect non-targeted soil microorganisms. Still, studies comparing the effect of multiple pesticides on a wide range of microbial endpoints associated with carbon cycling are scarce. Here, we employed fluorescence enzymatic assay and real-time PCR to evaluate the effect of 20 commercial pesticides, applied at their recommended dose and five times their recommended dose, on soil carbon cycling related enzymatic activities (α-1,4-glucosidase, β-1,4-glucosidase, β-d-cellobiohydrolase and β-xylosidase), and on the absolute abundance of functional genes (cbhl and chiA), in three different South Australian agricultural soils. The effects on cellulolytic and chitinolytic microorganisms, and the total microbial community composition were determined using shotgun metagenomic sequencing in selected pesticide-treated and untreated samples. The application of insecticides significantly increased the cbhl and chiA genes absolute abundance in the acidic soil. At the community level, insecticide fipronil had the greatest stimulating effect on cellulolytic and chitinolytic microorganisms, followed by fungicide metalaxyl-M and insecticide imidacloprid. A shift towards a fungal dominated microbial community was observed in metalaxyl-M treated soil. Overall, our results suggest that the application of pesticides might affect the soil carbon cycle and may disrupt the formation of soil organic matter and structure stabilisation.


Evaluation of the sorption mechanism of ionic liquids onto multi-walled carbon nanotubes.

  • Jerzy Wojsławski‎ et al.
  • Chemosphere‎
  • 2018‎

The knowledge of the sorption mechanism of different chemicals onto third generation carbon sorbents such as carbon nanotubes (CNTs) is needed in order to project systems for the effective removal of pollutants from the environment. This paper reports evaluation of the sorption mechanism of selected ionic liquids (ILs), being considered as potential pollutant in environment, onto various CNTs. CNTs characterized by the smallest diameter and the biggest surface area showed the highest sorption capacity to isolate ILs from an aqueous solution. CNTs with a bigger diameter, a functionalized surface and particularly a helical shape showed a lower sorption capacity. The sorption mechanism has been defined as complex, including van der Waals, π-π and electrostatic interactions with dominating π-π interactions. Due to the relatively high sorption coefficient (355.98 ± 20.69-6397.10 ± 355.42 L kg-1 depending on the IL) the study showed that multi-walled carbon nanotubes can potentially be used to effectively isolate ILs from an aqueous solution. Moreover, proved in this study, the fast sorption kinetic, and uncomplicated regeneration process, leading to an even higher sorption capacity, means that CNTs are promising material which could find potential applications in the treatment of water contaminated by ILs.


Phage shock protein and gene responses of Escherichia coli exposed to carbon nanotubes.

  • Tu Thi Anh Le‎ et al.
  • Chemosphere‎
  • 2019‎

Two-dimensional electrophoretic, western blotting, and quantitative polymerase chain reaction analyses of Escherichia coli cells exposed to pristine single walled carbon nanotubes (SWCNTs), and hydroxyl and carboxylic functionalized SWCNTs (SWCNT-OHs and SWCNT-COOHs) were conducted. SWCNT concentration and length were experimental variables. Exposing E. coli cells to SWCNTs led to changes in protein and gene expressions. Several proteins altered their regulations at a low SWCNT concentration (10 μg/ml) and were shut down at a high SWCNT concentration (100 μg/ml). The expressions of the phage shock protein (psp) operon including pspA, pspB, and pspC genes responded to the membrane stressors, SWCNTs, were also examined. While pspA and pspC expressions were influenced by the length, concentration, and functional groups of SWCNTs, pspB expression was not induced by SWCNTs. The alterations in phage shock protein and gene expressions indicated that SWCNTs caused cell membrane perturbation.


Impact of soil organic carbon on monosodium methyl arsenate (MSMA) sorption and species transformation.

  • Ling Ou‎ et al.
  • Chemosphere‎
  • 2017‎

Monosodium methyl arsenate (MSMA), a common arsenical herbicide, is a major contributor of anthropogenic arsenic (As) to the environment. Uncertainty about controls on MSMA fate and the rates and products of MSMA species transformation limits effective MSMA regulation and management. The main objectives of this research were to quantify the kinetics and mechanistic drivers of MSMA species transformation and removal from solution by soil. Laboratory MSMA incubation studies with two soils and varying soil organic carbon (SOC) levels were conducted. Arsenic removal from solution was more extensive and faster in sandy clay loam incubations than sand incubations, but for both systems, As removal was biphasic, with initially fast removal governed by sorption, followed by slower As removal limited by species transformation. Dimethylarsinic acid was the dominant product of species transformation at first, but inorganic As(V) was the ultimate transformation product by experiment ends. SOC decreased As removal and enhanced As species transformation, and SOC content had linear relationships with As removal rates (R2 = 0.59-0.95) for each soil and reaction phase. These results reveal the importance of edaphic conditions on inorganic As production and overall mobility of As following MSMA use, and such information should be considered in MSMA management and regulatory decisions.


Statistical optimization of glyphosate adsorption by biochar and activated carbon with response surface methodology.

  • Gayana Anjali Dissanayake Herath‎ et al.
  • Chemosphere‎
  • 2019‎

The introduction of glyphosate, found in herbicides, to waterbodies is of concern due to its toxicity and hence potential threat to public health and ecological systems. The present study has compared glyphosate removal from aqueous solution with activated carbon and biochar. Box-Behnken design, and percent contribution with Pareto analysis techniques were used in surface response and efficiency calculations modelled the process conditions and their effects. The adsorption data better fitted the Freundlich isotherm model than the Langmuir model. The rate of glyphosate adsorption was found to follow a pseudo-second-order model. pH of the solutions was regulated by buffering during the adsorption process. Higher efficacy of glyphosate removal was obtained by optimising parameters such as operating pH, initial glyphosate concentration, temperature, adsorbent dose, and contact time. The conditions yielding the best removals were pH 8.0, 0.2 mg/L, 50.0 °C, 11.4 g/L, 1.7 h for activated carbon and pH 5.0, 0.7 mg/L, 50.0 °C, 12.3 g/L, 1.9 h for biochar, for the aforementioned parameters respectively. The maximum removal capacity and efficiency were 0.0173 mg/g and 98.45% for activated carbon, and 0.0569 mg/g and 100.00% for biochar. The test results indicated biochar could be important from the perspective of performance and affordability.


Valorisation of bio-derived fluorescent carbon dots for metal sensing, DNA binding and bioimaging.

  • Kirubaharan Daphne Jacinth Gracia‎ et al.
  • Chemosphere‎
  • 2022‎

Carbon dots are quasi-spherical and zero dimensional nanomaterials with unique optical and electronic properties. In this work, a facile and sustainable strategy was employed to synthesise nitrogen doped carbon dots from Terminalia chebula via hydrothermal treatment with a quantum yield of 19.9%. The structural and optical properties of nitrogen doped carbon dots (N-CDs) were studied by UV-Visible absorption and fluorescence spectroscopy. The surface functional groups, average particle size and elemental analysis were assessed with the help of Fourier Transform Infra Red spectroscopy, High Resolution Transmission Electron Microscopy and Energy Dispersive X-ray analysis respectively. The N-CDs exhibited excitation dependent emission upon irradiation with UV light, pH stability over neutral range and excellent photostability. The average particle size of the synthesised N-CDs was found to be 3.56 nm. The fluorescence intensity of the N-CDs quenched linearly with increase in concentration of Fe3+ ions. The limit of detection (LOD) of N-CDs with Fe3+ ions was calculated to be 4.5 nM using Stern-Volmer plot. The fluorescence was restored by addition of EDTA to Fe3+ coordinated N-CD system. Further, the synthesised N-CDs interacted with ct-DNA through intercalative mode and the binding constant calculated using the Benesi Hildebrand plot was 1.78 × 108 mg/mL. The cytotoxicity of N-CDs was evaluated using MTT assay. The excellent biocompatible and less toxic nature of N-CDs was extrapolated to serve as fluorescent probes for imaging E.coli and SKMEL cells. From the results of this work, it is evident that the synthesised N-CDs can be used to develop efficient fluorescent metal sensors. The fluorescent property of N-CDs enables it to find extension as a potential curative drug, an efficient patterning agent and an effective biomarker to image biological cells causing no damage to normal cells.


Enhancing robustness of halophilic aerobic granule sludge by granular activated carbon at decreasing temperature.

  • Fei Han‎ et al.
  • Chemosphere‎
  • 2022‎

High salinity seriously inhibits the growth and metabolism of microorganisms, resulting in poor settleability, excessive biomass loss and low treatment efficiency of biological wastewater treatment systems. The development of halophilic aerobic granular sludge (HAGS) is a feasible strategy for addressing this challenge. However, there are problems with the granulation of HAGS and the stability of granules at decreasing temperatures. In this study, granular activated carbon (GAC) with a large specific surface area and good biocompatibility was used to enhance the robustness of HAGS. The results showed that the addition of GAC shortened the granulation time from 60 d (control system) to 35 d (GAC-addition system). The proteins contents of extracellular polymeric substances (EPS) in the GAC-addition system was significantly higher (p < 0.05) than that in the control system during granulation. Satisfactory NH4+-N and chemical oxygen demand (COD) removal efficiencies reached more than 96% in both systems at 18-26 °C. When the operating temperature was lower than 15 °C, the GAC-addition system exhibited better NH4+-N removal performance (>80%) than the control system (<60%). Moreover, the abundance of almost all nitrogen metabolism-related genes in the GAC-addition system was higher than that in the control system. During the granulation process, the enrichment of functional microorganisms, including family Flavobacteriaceae, Rhodobacteraceae, and Cryomorphaceae, may promote the production of EPS by significantly upregulating (p < 0.05) the metabolic pathway "Signaling Molecules and Interaction" in the GAC-addition system. The overexpression of the nitrogen assimilation gene glnA in heterotrophic bacteria (Halomonas and Marinobacterium) may promote the conversion of inorganic nitrogen to extracellular proteins to adapt to the decreased operational temperature. Our findings confirm that GAC addition is a simple but effective strategy to accelerate granulation and enhance the robustness of HAGS in saline wastewater treatment.


Miniaturized 3D printed electrochemical platform with optimized Fibrous carbon electrode for non-interfering hypochlorite sensing.

  • Jaligam Murali Mohan‎ et al.
  • Chemosphere‎
  • 2022‎

3D printing technology based electrochemical device can provide ease of fabrication, cost effectiveness, rapid detection and lower limit of detection. Herein, a novel, customized, portable and inexpensive 3D printed electrochemical device, has been presented. Fibrous carbon Toray paper, deposited with gold nanoparticles through electrodeposition, used as a working electrode which Further device was tested with 1 mM sodium hypochlorite using cyclic voltammetry (CV) and square wave voltammetry (SWV) in 0.1 M PBS. Hypochlorite has a pivotal role in supporting the growing chemical and paper industries and finds diverse uses in several clinical applications. It is primarily used for disinfecting food, water and surfaces. The scan rate study was carried out from 20 mVs-1 to 250 mVs-1 using cyclic voltammetry technique. The diffusion coefficient obtained from scan rate effect was 1.39 × 10-6 cm2s-1. The concentration range was evaluated with SWV technique, in a linear range of 0.6 μM-40 μM, with a detection limit of 0.7 μM. The device was further analyzed to ensure non-interference from co-existing chemicals like sodium chloride, potassium nitrate, sodium carbonate, sodium nitrite. Real sample analysis was done with sea, artificial sea and tap water with impressive recovery values. In summary, the developed working electrode can be customized and modified based on testing analyte; thus, the proposed device can be used for various other biochemical analytes.


Corncob-pyrite bioretention system for enhanced dissolved nutrient treatment: Carbon source release and mixotrophic denitrification.

  • Zhongshuai Weng‎ et al.
  • Chemosphere‎
  • 2022‎

Solid biomass waste amendment and substrates modification in bioretention systems have been increasingly used to achieve effective dissolved nutrients pollution control in stormwater runoff. However, the risk of excess chemical oxygen demand (COD) leaching from organic carbon sources is often overlooked on most occasions. Pyrite is an efficient electron donor for autotrophic denitrification, but little is known about the efficacy of autotrophic-heterotrophic synergistic effect between additional carbon source and pyrite in bioretention. Here, four bioretention columns (i.e., corncob column (C), pyrite column (P), the corncob-pyrite layered column (L-CP), and the corncob-pyrite mixed column (M-CP)) were designed and filled with soil, quartz sand, and modified media to reveal the synergistic effects. The results showed that the corncob-pyrite layered bioretention could maintain low COD effluent concentration with high stability and efficiency in treating dissolved nutrients. When the influent nitrogen and phosphorus concentrations were 8.46 mg/L and 0.94 mg/L, the average removal rates of ammonia nitrogen, total inorganic nitrogen, and phosphate were 83.6%, 70.52%, and 76.35%, respectively. The scouring experiment showed that placing the corncob in the mulch layer was beneficial to the sustained release of dissolved organic carbon (DOC). Erosion pits were found in the SEM images of used pyrite, indicating that autotrophic denitrifying bacteria in the bioretention could react with pyrite as an electron donor. The relative abundance of Thiobacillus in the submerged zone of the corncob-pyrite layered bioretention reached 38.39%, indicating that the carbon source in the mulch layer increased the relative abundance of Thiobacillus. Coexisting heterotrophic and autotrophic denitrification in this bioretention created a more abundant microbial community structure in the submerged zone. Overall, the corncob-pyrite layered bioretention is highly promising for stormwater runoff treatment, with effective pollution removal and minimal COD emission.


Organic carbon metabolism is a main determinant of hydrogen demand and dynamics in anaerobic soils.

  • Megan Meinel‎ et al.
  • Chemosphere‎
  • 2022‎

Hydrogen (H2) is a crucial electron donor for many processes in the environment including nitrate-, sulfate- and, iron-reduction, homoacetogenesis, and methanogenesis, and is a major determinant of microbial competition and metabolic pathways in groundwater, sediments, and soils. Despite the importance of H2 for many microbial processes in the environment, the total H2 consuming capacity (or H2 demand) of soils is generally unknown. Using soil microcosms with added H2, the aims of this study were 1) to measure the H2 demand of geochemically diverse soils and 2) to define the processes leading to this demand. Study results documented a large range of H2 demand in soil (0.034-1.2 millielectron equivalents H2 g-1 soil). The measured H2 demand greatly exceeded the theoretical demand predicted based on measured concentrations of common electron acceptors initially present in a library of 15 soils. While methanogenesis accounted for the largest fraction of H2 demand, humic acid reduction and acetogenesis were also significant contributing H2-consuming processes. Much of the H2 demand could be attributed to CO2 produced during incubation from fermentation and/or acetoclastic methanogenesis. The soil initial total organic carbon showed the strongest correlation to H2 demand. Besides external additions, H2 was likely generated or cycled in the microcosms. Apart from fermentative H2 production, carboxylate elongation to produce C4-C7 fatty acids may have accounted for additional H2 production in these soils. Many of these processes, especially the organic carbon contribution is underestimated in microbial models for H2 consumption in natural soil ecosystems or during bioremediation of contaminants in soils.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: