Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 242 papers

Oleaginous yeasts respond differently to carbon sources present in lignocellulose hydrolysate.

  • Jule Brandenburg‎ et al.
  • Biotechnology for biofuels‎
  • 2021‎

Microbial oils, generated from lignocellulosic material, have great potential as renewable and sustainable alternatives to fossil-based fuels and chemicals. By unravelling the diversity of lipid accumulation physiology in different oleaginous yeasts grown on the various carbon sources present in lignocellulose hydrolysate (LH), new targets for optimisation of lipid accumulation can be identified. Monitoring lipid formation over time is essential for understanding lipid accumulation physiology. This study investigated lipid accumulation in a variety of oleaginous ascomycetous and basidiomycetous strains grown in glucose and xylose and followed lipid formation kinetics of selected strains in wheat straw hydrolysate (WSH).


Carbon migration and metagenomic characteristics during anaerobic digestion of rice straw.

  • Dadi Chen‎ et al.
  • Biotechnology for biofuels‎
  • 2020‎

Considerable interest has been expressed in the development of anaerobic digestion (AD) of straw to solve the environmental problems caused by the dumping and burning of straw and to generate clean energy. However, the poor biodegradability of straw and the low efficiency of energy generation achieved during its AD are problematic. Studying the parameter changes involved in the process of AD is helpful for clarifying its micro-mechanisms and providing a theoretical basis for improving its efficiency. Currently, most research into process parameters has focused on gas production, methane content, pH, and volatile fatty acid (VFA) content; limited research has focused on carbon migration and functional gene changes during the AD of straw.


Efficient biochemical production of acetoin from carbon dioxide using Cupriavidus necator H16.

  • Carina Windhorst‎ et al.
  • Biotechnology for biofuels‎
  • 2019‎

Cupriavidus necator is the best-studied knallgas (also termed hydrogen oxidizing) bacterium and provides a model organism for studying the production of the storage polymer polyhydroxybutyrate (PHB). Genetically engineered strains could be applied for the autotrophic production of valuable chemicals. Nevertheless, the efficiency of the catalyzed processes is generally believed to be lower than with acetogenic bacteria. Experimental data on the potential efficiency of autotrophic production with C. necator are sparse. Hence, this study aimed at developing a strain for the production of the bulk chemical acetoin from carbon dioxide and to analyze the carbon and electron yield in detail.


Investigation of carbon and energy metabolic mechanism of mixotrophy in Chromochloris zofingiensis.

  • Zhao Zhang‎ et al.
  • Biotechnology for biofuels‎
  • 2021‎

Mixotrophy can confer a higher growth rate than the sum of photoautotrophy and heterotrophy in many microalgal species. Thus, it has been applied to biodiesel production and wastewater utilization. However, its carbon and energy metabolic mechanism is currently poorly understood.


Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast.

  • Víctor Guadalupe-Medina‎ et al.
  • Biotechnology for biofuels‎
  • 2013‎

Redox-cofactor balancing constrains product yields in anaerobic fermentation processes. This challenge is exemplified by the formation of glycerol as major by-product in yeast-based bioethanol production, which is a direct consequence of the need to reoxidize excess NADH and causes a loss of conversion efficiency. Enabling the use of CO2 as electron acceptor for NADH oxidation in heterotrophic microorganisms would increase product yields in industrial biotechnology.


Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum.

  • Jacob Valenzuela‎ et al.
  • Biotechnology for biofuels‎
  • 2012‎

Phaeodactylum tricornutum is a unicellular diatom in the class Bacillariophyceae. The full genome has been sequenced (<30 Mb), and approximately 20 to 30% triacylglyceride (TAG) accumulation on a dry cell basis has been reported under different growth conditions. To elucidate P. tricornutum gene expression profiles during nutrient-deprivation and lipid-accumulation, cell cultures were grown with a nitrate to phosphate ratio of 20:1 (N:P) and whole-genome transcripts were monitored over time via RNA-sequence determination.


Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose.

  • Basti Bergdahl‎ et al.
  • Biotechnology for biofuels‎
  • 2012‎

The concerted effects of changes in gene expression due to changes in the environment are ultimately reflected in the metabolome. Dynamics of metabolite concentrations under a certain condition can therefore give a description of the cellular state with a high degree of functional information. We used this potential to evaluate the metabolic status of two recombinant strains of Saccharomyces cerevisiae during anaerobic batch fermentation of a glucose/xylose mixture. Two isogenic strains were studied, differing only in the pathways used for xylose assimilation: the oxidoreductive pathway with xylose reductase (XR) and xylitol dehydrogenase (XDH) or the isomerization pathway with xylose isomerase (XI). The isogenic relationship between the two strains ascertains that the observed responses are a result of the particular xylose pathway and not due to unknown changes in regulatory systems. An increased understanding of the physiological state of these strains is important for further development of efficient pentose-utilizing strains for bioethanol production.


Robust, high-productivity phototrophic carbon capture at high pH and alkalinity using natural microbial communities.

  • Christine E Sharp‎ et al.
  • Biotechnology for biofuels‎
  • 2017‎

Bioenergy with carbon capture and storage (BECCS) has come to be seen as one of the most viable technologies to provide the negative carbon dioxide emissions needed to constrain global temperatures. In practice, algal biotechnology is the only form of BECCS that could be realized at scale without compromising food production. Current axenic algae cultivation systems lack robustness, are expensive and generally have marginal energy returns.


Common metabolic networks contribute to carbon sink strength of sorghum internodes: implications for bioenergy improvement.

  • Yin Li‎ et al.
  • Biotechnology for biofuels‎
  • 2019‎

Sorghum bicolor (L.) is an important bioenergy source. The stems of sweet sorghum function as carbon sinks and accumulate large amounts of sugars and lignocellulosic biomass and considerable amounts of starch, therefore providing a model of carbon allocation and accumulation for other bioenergy crops. While omics data sets for sugar accumulation have been reported in different genotypes, the common features of primary metabolism in sweet genotypes remain unclear. To obtain a cohesive and comparative picture of carbohydrate metabolism between sorghum genotypes, we compared the phenotypes and transcriptome dynamics of sugar-accumulating internodes among three different sweet genotypes (Della, Rio, and SIL-05) and two non-sweet genotypes (BTx406 and R9188).


A truncated form of the Carbon catabolite repressor 1 increases cellulase production in Trichoderma reesei.

  • Thiago M Mello-de-Sousa‎ et al.
  • Biotechnology for biofuels‎
  • 2014‎

Rut-C30 is a cellulase-hyperproducing Trichoderma reesei strain and, consequently, became the ancestor of most industry strains used in the production of plant cell wall-degrading enzymes, in particular cellulases. Due to three rounds of undirected mutagenesis its genetic background differs from the wild-type QM6a in many ways, of which two are the lack of a 83 kb large sequence in scaffold 15 and the partial lack of the gene encoding the Carbon catabolite repressor 1 (CREI). However, it is still unclear, what exactly enhances cellulase production in Rut-C30.


Transcriptomic and proteomic responses to very low CO2 suggest multiple carbon concentrating mechanisms in Nannochloropsis oceanica.

  • Li Wei‎ et al.
  • Biotechnology for biofuels‎
  • 2019‎

In industrial oleaginous microalgae such as Nannochloropsis spp., the key components of the carbon concentration mechanism (CCM) machineries are poorly defined, and how they are mobilized to facilitate cellular utilization of inorganic carbon remains elusive.


Effect of overliming and activated carbon detoxification on inhibitors removal and butanol fermentation of poplar prehydrolysates.

  • Yu Zhang‎ et al.
  • Biotechnology for biofuels‎
  • 2018‎

Biomass prehydrolysates from dilute acid pretreatment contain a considerable amount of fermentable sugars for biofuels production. However, carbonyl degradation compounds present severe toxicity to fermentation microbes. Furans (such as furfural and hydroxymethylfurfural), aliphatic acids (such as acetic acid, formic acid and levulinic acid) and phenolic compounds (such as vanillin and syringaldehyde) have been suggested to be the main inhibitors in biomass prehydrolysates. However, no single compound has been determined as the dominant toxic inhibitor. The effects of various detoxification methods on inhibitors removal have not been fully understood.


Biosynthesis of dendroketose from different carbon sources using in vitro and in vivo metabolic engineering strategies.

  • Jiangang Yang‎ et al.
  • Biotechnology for biofuels‎
  • 2018‎

Asymmetric aldol-type C-C bond formation with ketones used as electrophilic receptor remains a challenging reaction for aldolases as biocatalysts. To date, only one kind of dihydroxyacetone phosphate (DHAP)-dependent aldolases has been discovered and applied to synthesize branched-chain sugars directly using DHAP and dihydroxyacetone (DHA) as substrate. However, the unstable and high-cost properties of DHAP limit large-scale application. Therefore, biosynthesis of branched-chain sugar from low-cost and abundant carbon sources is essential.


Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources.

  • Dongyang Liu‎ et al.
  • Biotechnology for biofuels‎
  • 2013‎

Aspergillus fumigatus Z5 has a strong ability to decompose lignocellulose biomass, and its extracellular protein secretion has been reported in earlier studies employing traditional techniques. However, a comprehensive analysis of its secretion in the presence of different carbon sources is still lacking. The goal of this work was to identify, quantify and compare the secretome of A. fumigatus Z5 in the presence of different carbon sources to understand in more details the mechanisms of lignocellulose decomposition by Aspergillus fumigatus Z5.


Identification of novel metabolic interactions controlling carbon flux from xylose to ethanol in natural and recombinant yeasts.

  • Gert Trausinger‎ et al.
  • Biotechnology for biofuels‎
  • 2015‎

Unlike xylose-converting natural yeasts, recombinant strains of Saccharomyces cerevisiae expressing the same xylose assimilation pathway produce under anaerobic conditions xylitol rather than ethanol from xylose at low specific xylose conversion rates. Despite intense research efforts over the last two decades, differences in these phenotypes cannot be explained by current metabolic and kinetic models. To improve our understanding how metabolic flux of xylose carbon to ethanol is controlled, we developed a novel kinetic model based on enzyme mechanisms and applied quantitative metabolite profiling together with enzyme activity analysis to study xylose-to-ethanol metabolisms of Candida tenuis CBS4435 (q xylose = 0.10 g/gdc/h, 25 °C; Y ethanol = 0.44 g/g; Y xylitol = 0.09 g/g) and the recombinant S. cerevisiae strain BP000 (q xylose = 0.07 g/gdc/h, 30 °C; Y ethanol = 0.24 g/g; Y xylitol = 0.43 g/g), both expressing the same xylose reductase (XR), comprehensively.


Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products.

  • Francesca Pierobon‎ et al.
  • Biotechnology for biofuels‎
  • 2018‎

Bio-jet fuels are emerging as a valuable alternative to petroleum-based fuels for their potential for reducing greenhouse gas emissions and fossil fuel dependence. In this study, residual woody biomass from slash piles in the U.S. Pacific Northwest is used as a feedstock to produce iso-paraffinic kerosene, through the production of sugar and subsequent patented proprietary fermentation and upgrading. To enhance the economic viability and reduce the environmental impacts of iso-paraffinic kerosene, two co-products, activated carbon and lignosulfonate, are simultaneously produced within the same bio-refinery. A cradle-to-grave life cycle assessment (LCA) is performed for the residual woody biomass-based bio-jet fuel and compared against the cradle-to-grave LCA of petroleum-based jet fuel. This paper also discusses the differences in the environmental impacts of the residual biomass-based bio-jet fuel using two different approaches, mass allocation and system expansion, to partition the impacts between the bio-fuel and the co-products, which are produced in the bio-refinery.


A novel biocatalyst for efficient production of 2-oxo-carboxylates using glycerol as the cost-effective carbon source.

  • Yujiao Wang‎ et al.
  • Biotechnology for biofuels‎
  • 2015‎

The surplus of glycerol has increased remarkably as a main byproduct during the biofuel's production. Exploiting an alternative route for glycerol utilization is significantly important for sustainability of biofuels.


Systematically programmed adaptive evolution reveals potential role of carbon and nitrogen pathways during lipid accumulation in Chlamydomonas reinhardtii.

  • Natarajan Velmurugan‎ et al.
  • Biotechnology for biofuels‎
  • 2014‎

The concept of adaptive evolution implies underlying genetic mutations conferring a selective advantage to an organism under particular environmental conditions. Thus, a flow cytometry-based strategy was used to study the adaptive evolution in Chlamydomonas reinhardtii wild-type strain CC124 and starchless mutant sta6-1 cells, with respect to lipid metabolism under nitrogen-(N) depleted and -replete conditions.


Biomass, lipid accumulation kinetics, and the transcriptome of heterotrophic oleaginous microalga Tetradesmus bernardii under different carbon and nitrogen sources.

  • Baoyan Gao‎ et al.
  • Biotechnology for biofuels‎
  • 2021‎

Heterotrophic cultivation of microalgae has been proposed as a viable alternative method for novel high-value biomolecules, enriched biomass, and biofuel production because of their allowance of high cell density levels, as well as simple production technology. Tetradesmus bernardii, a newly isolated high-yielding oleaginous microalga under photoautotrophic conditions, is able to grow heterotrophically, meaning that it can consume organic carbon sources in dark condition. We investigated the effect of different carbon/nitrogen (C/N) ratios on the growth and lipid accumulation of T. bernardii in heterotrophic batch culture under two nitrogen sources (NaNO3 and CO(NH2)2). In addition, we conducted time-resolved transcriptome analysis to reveal the metabolic mechanism of T. bernardii in heterotrophic culture.


Coordination of consolidated bioprocessing technology and carbon dioxide fixation to produce malic acid directly from plant biomass in Myceliophthora thermophila.

  • Jingen Li‎ et al.
  • Biotechnology for biofuels‎
  • 2021‎

Consolidated bioprocessing (CBP) technique is a promising strategy for biorefinery construction, producing bulk chemicals directly from plant biomass without extra hydrolysis steps. Fixing and channeling CO2 into carbon metabolism for increased carbon efficiency in producing value-added compounds is another strategy for cost-effective bio-manufacturing. It has not been reported whether these two strategies can be combined in one microbial platform.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: