Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

The HIV-1 capsid core is an opportunistic nuclear import receptor.

  • Guangai Xue‎ et al.
  • Nature communications‎
  • 2023‎

The movement of viruses and other large macromolecular cargo through nuclear pore complexes (NPCs) is poorly understood. The human immunodeficiency virus type 1 (HIV-1) provides an attractive model to interrogate this process. HIV-1 capsid (CA), the chief structural component of the viral core, is a critical determinant in nuclear transport of the virus. HIV-1 interactions with NPCs are dependent on CA, which makes direct contact with nucleoporins (Nups). Here we identify Nup35, Nup153, and POM121 to coordinately support HIV-1 nuclear entry. For Nup35 and POM121, this dependence was dependent cyclophilin A (CypA) interaction with CA. Mutation of CA or removal of soluble host factors changed the interaction with the NPC. Nup35 and POM121 make direct interactions with HIV-1 CA via regions containing phenylalanine glycine motifs (FG-motifs). Collectively, these findings provide additional evidence that the HIV-1 CA core functions as a macromolecular nuclear transport receptor (NTR) that exploits soluble host factors to modulate NPC requirements during nuclear invasion.


The V86M mutation in HIV-1 capsid confers resistance to TRIM5α by abrogation of cyclophilin A-dependent restriction and enhancement of viral nuclear import.

  • Maxime Veillette‎ et al.
  • Retrovirology‎
  • 2013‎

HIV-1 is inhibited early after entry into cells expressing some simian orthologues of the tripartite motif protein family member TRIM5α. Mutants of the human orthologue (TRIM5αhu) can also provide protection against HIV-1. The host protein cyclophilin A (CypA) binds incoming HIV-1 capsid (CA) proteins and enhances early stages of HIV-1 replication by unknown mechanisms. On the other hand, the CA-CypA interaction is known to increase HIV-1 susceptibility to restriction by TRIM5α. Previously, the mutation V86M in the CypA-binding loop of HIV-1 CA was found to be selected upon serial passaging of HIV-1 in cells expressing Rhesus macaque TRIM5α (TRIM5αrh). The objectives of this study were (i) to analyze whether V86M CA allows HIV-1 to escape mutants of TRIM5αhu, and (ii) to characterize the role of CypA in the resistance to TRIM5α conferred by V86M.


Nuclear restriction of HIV-1 infection by SUN1.

  • Mirjana Persaud‎ et al.
  • Scientific reports‎
  • 2021‎

Overexpression of the human Sad-1-Unc-84 homology protein 2 (SUN2) blocks HIV-1 infection in a capsid-dependent manner. In agreement, we showed that overexpression of SUN1 (Sad1 and UNC-84a) also blocks HIV-1 infection in a capsid-dependent manner. SUN2 and the related protein SUN1 are transmembrane proteins located in the inner membrane of the nuclear envelope. The N-terminal domains of SUN1/2 localizes to the nucleoplasm while the C-terminal domains are localized in the nuclear lamina. Because the N-terminal domains of SUN1/2 are located in the nucleoplasm, we hypothesized that SUN1/2 might be interacting with the HIV-1 replication complex in the nucleus leading to HIV-1 inhibition. Our results demonstrated that SUN1/2 interacts with the HIV-1 capsid, and in agreement with our hypothesis, the use of N-terminal deletion mutants showed that SUN1/2 proteins bind to the viral capsid by using its N-terminal domain. SUN1/2 deletion mutants correlated restriction of HIV-1 with capsid binding. Interestingly, the ability of SUN1/2 to restrict HIV-1 also correlated with perinuclear localization of these proteins. In agreement with the notion that SUN proteins interact with the HIV-1 capsid in the nucleus, we found that restriction of HIV-1 by overexpression of SUN proteins do not block the entry of the HIV-1 core into the nucleus. Our results showed that HIV-1 restriction is mediated by the interaction of SUN1/2N-terminal domains with the HIV-1 core in the nuclear compartment.


MxB binds to the HIV-1 core and prevents the uncoating process of HIV-1.

  • Thomas Fricke‎ et al.
  • Retrovirology‎
  • 2014‎

The IFN-α-inducible restriction factor MxB blocks HIV-1 infection after reverse transcription but prior to integration. Genetic evidence suggested that capsid is the viral determinant for restriction by MxB. This work explores the ability of MxB to bind to the HIV-1 core, and the role of capsid-binding in restriction.


Cyclophilin A Prevents HIV-1 Restriction in Lymphocytes by Blocking Human TRIM5α Binding to the Viral Core.

  • Anastasia Selyutina‎ et al.
  • Cell reports‎
  • 2020‎

Disruption of cyclophilin A (CypA)-capsid interactions affects HIV-1 replication in human lymphocytes. To understand this mechanism, we utilize human Jurkat cells, peripheral blood mononuclear cells (PBMCs), and CD4+ T cells. Our results show that inhibition of HIV-1 infection caused by disrupting CypA-capsid interactions is dependent on human tripartite motif 5α (TRIM5αhu), showing that TRIM5αhu restricts HIV-1 in CD4+ T cells. Accordingly, depletion of TRIM5αhu in CD4+ T cells rescues HIV-1 that fail to interact with CypA, such as HIV-1-P90A. We found that TRIM5αhu binds to the HIV-1 core. Disruption of CypA-capsid interactions fail to affect HIV-1-A92E/G94D infection, correlating with the loss of TRIM5αhu binding to HIV-1-A92E/G94D cores. Disruption of CypA-capsid interactions in primary cells has a greater inhibitory effect on HIV-1 when compared to Jurkat cells. Consistent with TRIM5α restriction, disruption of CypA-capsid interactions in CD4+ T cells inhibits reverse transcription. Overall, our results reveal that CypA binding to the core protects HIV-1 from TRIM5αhu restriction.


Nuclear Import of the HIV-1 Core Precedes Reverse Transcription and Uncoating.

  • Anastasia Selyutina‎ et al.
  • Cell reports‎
  • 2020‎

HIV-1 reverse transcription (RT) occurs before or during uncoating, but the cellular compartment where RT and uncoating occurs is unknown. Using imaging and biochemical assays to track HIV-1 capsids in the nucleus during infection, we demonstrated that higher-order capsid complexes and/or complete cores containing the viral genome are imported into the nucleus. Inhibition of RT does not prevent capsid nuclear import; thus, RT may occur in nuclear compartments. Cytosolic and nuclear fractions of infected cells reveal that most RT intermediates are enriched in nuclear fractions, suggesting that HIV-1 RT occurs in the nucleus alongside uncoating. In agreement, we find that capsid in the nucleus induces recruitment of cleavage and polyadenylation specific factor 6 (CPSF6) to SC35 nuclear speckles, which are highly active transcription sites, suggesting that CPSF6 through capsid is recruiting viral complexes to SC35 speckles for the occurrence of RT. Thus, nuclear import precedes RT and uncoating, which fundamentally changes our understanding of HIV-1 infection.


Unique features of TRIM5alpha among closely related human TRIM family members.

  • Xing Li‎ et al.
  • Virology‎
  • 2007‎

The tripartite motif (TRIM) protein, TRIM5alpha, restricts some retroviruses, including human immunodeficiency virus (HIV-1), from infecting the cells of particular species. TRIM proteins contain RING, B-box, coiled-coil and, in some cases, B30.2(SPRY) domains. We investigated the properties of human TRIM family members closely related to TRIM5. These TRIM proteins, like TRIM5alpha, assembled into homotrimers and co-localized in the cytoplasm with TRIM5alpha. TRIM5alpha turned over more rapidly than related TRIM proteins. TRIM5alpha, TRIM34 and TRIM6 associated with HIV-1 capsid-nucleocapsid complexes assembled in vitro; the TRIM5alpha and TRIM34 interactions with these complexes were dependent on their B30.2(SPRY) domains. Only TRIM5alpha potently restricted infection by the retroviruses studied; overexpression of TRIM34 resulted in modest inhibition of simian immunodeficiency virus (SIV(mac)) infection. In contrast to the other TRIM genes examined, TRIM5 exhibited evidence of positive selection. The unique features of TRIM5alpha among its TRIM relatives underscore its special status as an antiviral factor.


Both TRIM5alpha and TRIMCyp have only weak antiviral activity in canine D17 cells.

  • Julie Bérubé‎ et al.
  • Retrovirology‎
  • 2007‎

TRIM5alpha, which is expressed in most primates and the related TRIMCyp, which has been found in one of the New World monkey species, are antiviral proteins of the TRIM5 family that are able to intercept incoming retroviruses early after their entry into cells. The mechanism of action has been partially elucidated for TRIM5alpha, which seems to promote premature decapsidation of the restricted retroviruses. In addition, through its N-terminal RING domain, TRIM5alpha may sensitize retroviruses to proteasome-mediated degradation. TRIM5alpha-mediated restriction requires a physical interaction with the capsid protein of targeted retroviruses. It is unclear whether other cellular proteins are involved in the inhibition mediated by TRIM5alpha and TRIMCyp. A previous report suggested that the inhibition of HIV-1 by the rhesus macaque orthologue of TRIM5alpha was inefficient in the D17a canine cell line, suggesting that the cellular environment was important for the restriction mechanism. Here we investigated further the behavior of TRIM5alpha and TRIMCyp in the D17 cells.


A novel aminoacid determinant of HIV-1 restriction in the TRIM5α variable 1 region isolated in a random mutagenic screen.

  • Quang Toan Pham‎ et al.
  • Virus research‎
  • 2013‎

Human-derived antiretroviral transgenes are of great biomedical interest and are actively pursued. HIV-1 is efficiently inhibited at post-entry, pre-integration replication stages by point mutations in the variable region 1 (v1) of the human restriction factor TRIM5α. Here we use a mutated megaprimer approach to create a mutant library of TRIM5αHu v1 and to isolate a mutation at Gly330 (G330E) that inhibits transduction of an HIV-1 vector as efficiently as the previously described mutants at positions Arg332 and Arg335. As was the case for these other mutations, modification of the local v1 charge toward increased acidity was key to inhibiting HIV-1. G330E TRIM5αHu also disrupted replication-competent HIV-1 propagation in a human T cell line. Interestingly, G330E did not enhance restriction of HIV-1 when combined with mutations at Arg332 or Arg335. Accordingly, the triple mutant G330E-R332G-R335G bound purified recombinant HIV-1 capsid tubes less efficiently than the double mutant R332G-R335G did. In a structural model of the TRIM5αHu PRYSPRY domain, the addition of G330E to the double mutant R332G-R335G caused extensive changes to the capsid-binding surface, which may explain why the triple mutant was no more restrictive than the double mutant. The HIV-1 inhibitory potential of Gly330 mutants was not predicted by examination of natural TRIM5α orthologs that are known to strongly inhibit HIV-1. This work underlines the potential of random mutagenesis to isolate novel variants of human proteins with antiviral properties.


A putative SUMO interacting motif in the B30.2/SPRY domain of rhesus macaque TRIM5α important for NF-κB/AP-1 signaling and HIV-1 restriction.

  • Marie-Édith Nepveu-Traversy‎ et al.
  • Heliyon‎
  • 2016‎

TRIM5α from the rhesus macaque (TRIM5αRh) is a restriction factor that shows strong activity against HIV-1. TRIM5αRh binds specifically to HIV-1 capsid (CA) through its B30.2/PRYSPRY domain shortly after entry of the virus into the cytoplasm. Recently, three putative SUMO interacting motifs (SIMs) have been identified in the PRYSPRY domain of human and macaque TRIM5α. However, structural modeling of this domain suggested that two of them were buried in the hydrophobic core of the protein, implying that interaction with SUMO was implausible, while the third one was not relevant to restriction. In light of these results, we re-analyzed the TRIM5αRh PRYSPRY sequence and identified an additional putative SIM ((435)VIIC(438)) which we named SIM4. This motif is exposed at the surface of the PRYSPRY domain, allowing potential interactions with SUMO or SUMOylated proteins. Introducing a double mutation in SIM4 (V435K, I436K) did not alter stability, unlike mutations in SIM1. SIM4-mutated TRIM5αRh failed to bind HIV-1CA and lost the ability to restrict this virus. Accordingly, SIM4 undergoes significant variation among primates and substituting this motif with naturally occurring SIM4 variants affected HIV-1 restriction by TRIM5αRh, suggesting a direct role in capsid recognition. Interestingly, SIM4-mutated TRIM5αRh also failed to activate NF-κB and AP-1-mediated transcription. Although there is no direct evidence that SIM4 is involved in direct interaction with SUMO or a SUMOylated protein, mutating this motif strongly reduced co-localization of TRIM5αRh with SUMO-1 and with PML, a SUMOylated nuclear protein. In conclusion, this new putative SIM is crucial for both direct interaction with incoming capsids and for NF-κB/AP-1 signaling. We speculate that the latter function is mediated by interactions of SIM4 with a SUMOylated protein involved in the NF-κB/AP-1 signaling pathways.


HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus.

  • Viacheslav Malikov‎ et al.
  • Nature communications‎
  • 2015‎

Intracellular transport of cargos, including many viruses, involves directed movement on microtubules mediated by motor proteins. Although a number of viruses bind motors of opposing directionality, how they associate with and control these motors to accomplish directed movement remains poorly understood. Here we show that human immunodeficiency virus type 1 (HIV-1) associates with the kinesin-1 adaptor protein, Fasiculation and Elongation Factor zeta 1 (FEZ1). RNAi-mediated FEZ1 depletion blocks early infection, with virus particles exhibiting bi-directional motility but no net movement to the nucleus. Furthermore, both dynein and kinesin-1 motors are required for HIV-1 trafficking to the nucleus. Finally, the ability of exogenously expressed FEZ1 to promote early HIV-1 infection requires binding to kinesin-1. Our findings demonstrate that opposing motors both contribute to early HIV-1 movement and identify the kinesin-1 adaptor, FEZ1 as a capsid-associated host regulator of this process usurped by HIV-1 to accomplish net inward movement towards the nucleus.


Formation of nuclear CPSF6/CPSF5 biomolecular condensates upon HIV-1 entry into the nucleus is important for productive infection.

  • Charlotte Luchsinger‎ et al.
  • Scientific reports‎
  • 2023‎

The early events of HIV-1 infection involve the transport of the viral core into the nucleus. This event triggers the translocation of CPSF6 from paraspeckles into nuclear speckles forming puncta-like structures. Our investigations revealed that neither HIV-1 integration nor reverse transcription is required for the formation of puncta-like structures. Moreover, HIV-1 viruses without viral genome are competent for the induction of CPSF6 puncta-like structures. In agreement with the notion that HIV-1 induced CPSF6 puncta-like structures are biomolecular condensates, we showed that osmotic stress and 1,6-hexanediol induced the disassembly of CPSF6 condensates. Interestingly, replacing the osmotic stress by isotonic media re-assemble CPSF6 condensates in the cytoplasm of the cell. To test whether CPSF6 condensates were important for infection we utilized hypertonic stress, which prevents formation of CPSF6 condensates, during infection. Remarkably, preventing the formation of CPSF6 condensates inhibits the infection of wild type HIV-1 but not of HIV-1 viruses bearing the capsid changes N74D and A77V, which do not form CPSF6 condensates during infection1,2. We also investigated whether the functional partners of CPSF6 are recruited to the condensates upon infection. Our experiments revealed that CPSF5, but not CPSF7, co-localized with CPSF6 upon HIV-1 infection. We found condensates containing CPSF6/CPSF5 in human T cells and human primary macrophages upon HIV-1 infection. Additionally, we observed that the integration cofactor LEDGF/p75 changes distribution upon HIV-1 infection and surrounds the CPSF6/CPSF5 condensates. Overall, our work demonstrated that CPSF6 and CPSF5 are forming biomolecular condensates that are important for infection of wild type HIV-1 viruses.


GS-CA1 and lenacapavir stabilize the HIV-1 core and modulate the core interaction with cellular factors.

  • Anastasia Selyutina‎ et al.
  • iScience‎
  • 2022‎

The HIV-1 capsid is the target for the antiviral drugs GS-CA1 and Lenacapavir (GS-6207). We investigated the mechanism by which GS-CA1 and GS-6207 inhibit HIV-1 infection. HIV-1 inhibition by GS-CA1 did not require CPSF6 in CD4+ T cells. Contrary to PF74 that accelerates uncoating of HIV-1, GS-CA1 and GS-6207 stabilized the core. GS-CA1, unlike PF74, allowed the core to enter the nucleus, which agrees with the fact that GS-CA1 inhibits infection after reverse transcription. Unlike PF74, GS-CA1 did not disaggregate preformed CPSF6 complexes in nuclear speckles, suggesting that PF74 and GS-CA1 have different mechanisms of action. GS-CA1 stabilized the HIV-1 core, possibly by inducing a conformational shift in the core; in agreement, HIV-1 cores bearing N74D regained their ability to bind CPSF6 in the presence of GS-CA1. We showed that GS-CA1 binds to the HIV-1 core, changes its conformation, stabilizes the core, and thereby prevents viral uncoating and infection.


Editing of the human TRIM5 gene to introduce mutations with the potential to inhibit HIV-1.

  • Caroline Dufour‎ et al.
  • PloS one‎
  • 2018‎

The type I interferon (IFN-I)-inducible human restriction factor TRIM5α inhibits the infection of human cells by specific nonhuman retroviruses, such as N-MLV and EIAV, but does not generally target HIV-1. However, the introduction of two aminoacid substitutions, R332G and R355G, in the human TRIM5α (huTRIM5α) domain responsible for retroviral capsid recognition leads to efficient HIV-1 restriction upon stable over-expression. CRISPR-Cas-based approaches to precisely edit DNA could be employed to modify TRIM5 in human cells. Toward this aim, we used a DNA transfection-based CRISPR-Cas9 genome editing protocol to successfully mutate TRIM5 to its potentially HIV-1-restrictive version by homology-directed repair (HDR) in HEK293T cells. Nine clones bearing at least one HDR-edited TRIM5 allele containing both mutations were isolated (5.6% overall efficiency), whereas another one contained only the R332G mutation. Of concern, several of these HDR-edited clones contained on-target undesired mutations, and none had all the alleles corrected. Our study demonstrates the feasibility of editing the TRIM5 gene in human cells and identifies the main challenges to be addressed in order to use this approach to confer protection from HIV-1.


HIV-1 capsids from B27/B57+ elite controllers escape Mx2 but are targeted by TRIM5α, leading to the induction of an antiviral state.

  • Natacha Merindol‎ et al.
  • PLoS pathogens‎
  • 2018‎

Elite controllers (ECs) are a rare subset of HIV-1 slow progressors characterized by prolonged viremia suppression. HLA alleles B27 and B57 promote the cytotoxic T lymphocyte (CTL)-mediated depletion of infected cells in ECs, leading to the emergence of escape mutations in the viral capsid (CA). Whether those mutations modulate CA detection by innate sensors and effectors is poorly known. Here, we investigated the targeting of CA from B27/B57+ individuals by cytosolic antiviral factors Mx2 and TRIM5α. Toward that aim, we constructed chimeric HIV-1 vectors using CA isolated from B27/B57+ or control subjects. HIV-1 vectors containing B27/B57+-specific CA had increased sensitivity to TRIM5α but not to Mx2. Following exposure to those vectors, cells showed increased resistance against both TRIM5α-sensitive and -insensitive HIV-1 strains. Induction of the antiviral state did not require productive infection by the TRIM5α-sensitive virus, as shown using chemically inactivated virions. Depletion experiments revealed that TAK1 and Ubc13 were essential to the TRIM5α-dependent antiviral state. Accordingly, induction of the antiviral state was accompanied by the activation of NF-κB and AP-1 in THP-1 cells. Secretion of IFN-I was involved in the antiviral state in THP-1 cells, as shown using a receptor blocking antibody. This work identifies innate activation pathways that are likely to play a role in the natural resistance to HIV-1 progression in ECs.


Inhibition of microtubules and dynein rescues human immunodeficiency virus type 1 from owl monkey TRIMCyp-mediated restriction in a cellular context-specific fashion.

  • Paulina Pawlica‎ et al.
  • The Journal of general virology‎
  • 2015‎

IFN-induced restriction factors can significantly affect the replicative capacity of retroviruses in mammals. TRIM5α (tripartite motif protein 5, isoform α) is a restriction factor that acts at early stages of the virus life cycle by intercepting and destabilizing incoming retroviral cores. Sensitivity to TRIM5α maps to the N-terminal domain of the retroviral capsid proteins. In several New World and Old World monkey species, independent events of retrotransposon-mediated insertion of the cyclophilin A (CypA)-coding sequence in the trim5 gene have given rise to TRIMCyp (also called TRIM5-CypA), a hybrid protein that is active against some lentiviruses in a species-specific fashion. In particular, TRIMCyp from the owl monkey (omkTRIMCyp) very efficiently inhibits human immunodeficiency virus type 1 (HIV-1). Previously, we showed that disrupting the integrity of microtubules (MTs) and of cytoplasmic dynein complexes partially rescued replication of retroviruses, including HIV-1, from restriction mediated by TRIM5α. Here, we showed that efficient restriction of HIV-1 by omkTRIMCyp was similarly dependent on the MT network and on dynein complexes, but in a context-dependent fashion. When omkTRIMCyp was expressed in human HeLa cells, restriction was partially counteracted by pharmacological agents targeting MTs or by small interfering RNA-mediated inhibition of dynein. The same drugs (nocodazole and paclitaxel) also rescued HIV-1 from restriction in cat CRFK cells, although to a lesser extent. Strikingly, neither nocodazole, paclitaxel nor depletion of the dynein heavy chain had a significant effect on the restriction of HIV-1 in an owl monkey cell line. These results suggested the existence of cell-specific functional interactions between MTs/dynein and TRIMCyp.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: