Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

IL-23 signaling prevents ferroptosis-driven renal immunopathology during candidiasis.

  • Nicolas Millet‎ et al.
  • Nature communications‎
  • 2022‎

During infection the host relies on pattern-recognition receptors to sense invading fungal pathogens to launch immune defense mechanisms. While fungal recognition and immune effector responses are organ and cell type specific, during disseminated candidiasis myeloid cells exacerbate collateral tissue damage. The β-glucan receptor ephrin type-A 2 receptor (EphA2) is required to initiate mucosal inflammatory responses during oral Candida infection. Here we report that EphA2 promotes renal immunopathology during disseminated candidiasis. EphA2 deficiency leads to reduced renal inflammation and injury. Comprehensive analyses reveal that EphA2 restrains IL-23 secretion from and migration of dendritic cells. IL-23 signaling prevents ferroptotic host cell death during infection to limit inflammation and immunopathology. Further, host cell ferroptosis limits antifungal effector functions via releasing the lipid peroxidation product 4-hydroxynonenal to induce various forms of cell death. Thus, we identify ferroptotic cell death as a critical pathway of Candida-mediated renal immunopathology that opens a new avenue to tackle Candida infection and inflammation.


The Aryl Hydrocarbon Receptor Governs Epithelial Cell Invasion during Oropharyngeal Candidiasis.

  • Norma V Solis‎ et al.
  • mBio‎
  • 2017‎

Oropharyngeal candidiasis (OPC), caused predominantly by Candida albicans, is a prevalent infection in patients with advanced AIDS, defects in Th17 immunity, and head and neck cancer. A characteristic feature of OPC is fungal invasion of the oral epithelial cells. One mechanism by which C. albicans hyphae can invade oral epithelial cells is by expressing the Als3 and Ssa1 invasins that interact with the epidermal growth factor receptor (EGFR) on epithelial cells and stimulate endocytosis of the organism. However, the signaling pathways that function downstream of EGFR and mediate C. albicans endocytosis are poorly defined. Here, we report that C. albicans infection activates the aryl hydrocarbon receptor (AhR), leading to activation of Src family kinases (SFKs), which in turn phosphorylate EGFR and induce endocytosis of the fungus. Furthermore, treatment of oral epithelial cells with interferon gamma inhibits fungal endocytosis by inducing the synthesis of kynurenines, which cause prolonged activation of AhR and SFKs, thereby interfering with C. albicans-induced EGFR signaling. Treatment of both immunosuppressed and immunocompetent mice with an AhR inhibitor decreases phosphorylation of SFKs and EGFR in the oral mucosa, reduces fungal invasion, and lessens the severity of OPC. Thus, our data indicate that AhR plays a central role in governing the pathogenic interactions of C. albicans with oral epithelial cells during OPC and suggest that this receptor is a potential therapeutic target.IMPORTANCE OPC is caused predominantly by the fungus C. albicans, which can invade the oral epithelium by several mechanisms. One of these mechanisms is induced endocytosis, which is stimulated when fungal invasins bind to epithelial cell receptors such as EGFR. Receptor binding causes rearrangement of epithelial cell microfilaments, leading to the formation of pseudopods that engulf the fungus and pull it into the epithelial cell. We discovered AhR acts via SFKs to phosphorylate EGFR and induce the endocytosis of C. albicans Our finding that a small molecule inhibitor of AhR ameliorates OPC in mice suggests that a strategy of targeting host cell signaling pathways that govern epithelial cell endocytosis of C. albicans holds promise as a new approach to preventing or treating OPC.


Control of β-glucan exposure by the endo-1,3-glucanase Eng1 in Candida albicans modulates virulence.

  • Mengli Yang‎ et al.
  • PLoS pathogens‎
  • 2022‎

Candida albicans is a major opportunistic pathogen of humans. It can grow as morphologically distinct yeast, pseudohyphae and hyphae, and the ability to switch reversibly among different forms is critical for its virulence. The relationship between morphogenesis and innate immune recognition is not quite clear. Dectin-1 is a major C-type lectin receptor that recognizes β-glucan in the fungal cell wall. C. albicans β-glucan is usually masked by the outer mannan layer of the cell wall. Whether and how β-glucan masking is differentially regulated during hyphal morphogenesis is not fully understood. Here we show that the endo-1,3-glucanase Eng1 is differentially expressed in yeast, and together with Yeast Wall Protein 1 (Ywp1), regulates β-glucan exposure and Dectin-1-dependent immune activation of macrophage by yeast cells. ENG1 deletion results in enhanced Dectin-1 binding at the septa of yeast cells; while eng1 ywp1 yeast cells show strong overall Dectin-1 binding similar to hyphae of wild-type and eng1 mutants. Correlatively, hyphae of wild-type and eng1 induced similar levels of cytokines in macrophage. ENG1 expression and Eng1-mediated β-glucan trimming are also regulated by antifungal drugs, lactate and N-acetylglucosamine. Deletion of ENG1 modulates virulence in the mouse model of hematogenously disseminated candidiasis in a Dectin-1-dependent manner. The eng1 mutant exhibited attenuated lethality in male mice, but enhanced lethality in female mice, which was associated with a stronger renal immune response and lower fungal burden. Thus, Eng1-regulated β-glucan exposure in yeast cells modulates the balance between immune protection and immunopathogenesis during disseminated candidiasis.


Candida albicans stimulates formation of a multi-receptor complex that mediates epithelial cell invasion during oropharyngeal infection.

  • Quynh T Phan‎ et al.
  • PLoS pathogens‎
  • 2023‎

Fungal invasion of the oral epithelium is central to the pathogenesis of oropharyngeal candidiasis (OPC). Candida albicans invades the oral epithelium by receptor-induced endocytosis but this process is incompletely understood. We found that C. albicans infection of oral epithelial cells induces c-Met to form a multi-protein complex with E-cadherin and the epidermal growth factor receptor (EGFR). E-cadherin is necessary for C. albicans to activate both c-Met and EGFR and to induce the endocytosis of C. albicans. Proteomics analysis revealed that c-Met interacts with C. albicans Hyr1, Als3 and Ssa1. Both Hyr1 and Als3 are required for C. albicans to stimulate c-Met and EGFR in oral epithelial cells in vitro and for full virulence during OPC in mice. Treating mice with small molecule inhibitors of c-Met and EGFR ameliorates OPC, demonstrating the potential therapeutic efficacy of blocking these host receptors for C. albicans.


Candida albicans stimulates the formation of a multi-receptor complex that mediates epithelial cell invasion during oropharyngeal infection.

  • Quynh T Phan‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Fungal invasion of the oral epithelium is central to the pathogenesis of oropharyngeal candidiasis (OPC). Candida albicans invades the oral epithelium by receptor-induced endocytosis but this process is incompletely understood. We found that C. albicans infection of oral epithelial cells induces c-Met to form a multi-protein complex with E-cadherin and the epidermal growth factor receptor (EGFR). E-cadherin is necessary for C. albicans to activate both c-Met and EGFR and to induce the endocytosis of C. albicans . Proteomics analysis revealed that c-Met interacts with C. albicans Hyr1, Als3 and Ssa1. Both Hyr1 and Als3 were required for C. albicans stimulation of c-Met and EGFR in oral epithelial cells in vitro and for full virulence during OPC in mice. Treating mice with small molecule inhibitors of c-Met and EGFR ameliorated OPC, demonstrating the potential therapeutic efficacy of blocking these host receptors for C. albicans .


EphA2 Is a Neutrophil Receptor for Candida albicans that Stimulates Antifungal Activity during Oropharyngeal Infection.

  • Marc Swidergall‎ et al.
  • Cell reports‎
  • 2019‎

During oropharyngeal candidiasis (OPC), Candida albicans proliferates and invades the superficial oral epithelium. Ephrin type-A receptor 2 (EphA2) functions as an oral epithelial cell β-glucan receptor that triggers the production of proinflammatory mediators in response to fungal infection. Because EphA2 is also expressed by neutrophils, we investigated its role in neutrophil candidacidal activity during OPC. We found that EphA2 on stromal cells is required for the accumulation of phagocytes in the oral mucosa of mice with OPC. EphA2 on neutrophils is also central to host defense against OPC. The interaction of neutrophil EphA2 with serum-opsonized C. albicans yeast activates the MEK-ERK signaling pathway, leading to NADPH subunit p47phox site-specific phospho-priming. This priming increases intracellular reactive oxygen species production and enhances fungal killing. Thus, in neutrophils, EphA2 serves as a receptor for β-glucans that augments Fcγ receptor-mediated antifungal activity and controls early fungal proliferation during OPC.


EphA2 is an epithelial cell pattern recognition receptor for fungal β-glucans.

  • Marc Swidergall‎ et al.
  • Nature microbiology‎
  • 2018‎

Oral epithelial cells discriminate between pathogenic and non-pathogenic stimuli, and only induce an inflammatory response when they are exposed to high levels of a potentially harmful microorganism. The pattern recognition receptors (PRRs) in epithelial cells that mediate this differential response are poorly understood. Here, we demonstrate that the ephrin type-A receptor 2 (EphA2) is an oral epithelial cell PRR that binds to exposed β-glucans on the surface of the fungal pathogen Candida albicans. Binding of C. albicans to EphA2 on oral epithelial cells activates signal transducer and activator of transcription 3 and mitogen-activated protein kinase signalling in an inoculum-dependent manner, and is required for induction of a proinflammatory and antifungal response. EphA2 -/- mice have impaired inflammatory responses and reduced interleukin-17 signalling during oropharyngeal candidiasis, resulting in more severe disease. Our study reveals that EphA2 functions as a PRR for β-glucans that senses epithelial cell fungal burden and is required for the maximal mucosal inflammatory response to C. albicans.


Serum bridging molecules drive candidal invasion of human but not mouse endothelial cells.

  • Quynh T Phan‎ et al.
  • PLoS pathogens‎
  • 2022‎

During hematogenously disseminated candidiasis, blood borne fungi must invade the endothelial cells that line the blood vessels to infect the deep tissues. Although Candida albicans, which forms hyphae, readily invades endothelial cells, other medically important species of Candida are poorly invasive in standard in vitro assays and have low virulence in immunocompetent mouse models of disseminated infection. Here, we show that Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei can bind to vitronectin and high molecular weight kininogen present in human serum. Acting as bridging molecules, vitronectin and kininogen bind to αv integrins and the globular C1q receptor (gC1qR), inducing human endothelial cells to endocytose the fungus. This mechanism of endothelial cell invasion is poorly supported by mouse endothelial cells but can be restored when mouse endothelial cells are engineered to express human gC1qR or αv integrin. Overall, these data indicate that bridging molecule-mediated endocytosis is a common pathogenic strategy used by many medically important Candida spp. to invade human vascular endothelial cells.


The Globular C1q Receptor Is Required for Epidermal Growth Factor Receptor Signaling during Candida albicans Infection.

  • Quynh T Phan‎ et al.
  • mBio‎
  • 2021‎

During oropharyngeal candidiasis, Candida albicans activates the epidermal growth factor receptor (EGFR), which induces oral epithelial cells to endocytose the fungus and synthesize proinflammatory mediators. To elucidate EGFR signaling pathways that are stimulated by C. albicans, we used proteomics to identify 1,214 proteins that were associated with EGFR in C. albicans-infected cells. Seven of these proteins were selected for additional study. Among these proteins, WW domain-binding protein 2, Toll-interacting protein, interferon-induced transmembrane protein 3 (IFITM3), and the globular C1q receptor (gC1qR) were found to associate with EGFR in viable oral epithelial cells. Each of these proteins was required for maximal endocytosis of C. albicans, and all regulated fungus-induced production of interleukin-1β (IL-1β) and/or IL-8, either positively or negatively. gC1qR was found to function as a key coreceptor with EGFR. Interacting with the C. albicans Als3 invasin, gC1qR was required for the fungus to induce autophosphorylation of both EGFR and the ephrin type A receptor 2. The combination of gC1qR and EGFR was necessary for maximal endocytosis of C. albicans and secretion of IL-1β, IL-8, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by human oral epithelial cells. In mouse oral epithelial cells, inhibition of gC1qR failed to block C. albicans-induced phosphorylation, and knockdown of IFITM3 did not inhibit C. albicans endocytosis, indicating that gC1qR and IFITM3 function differently in mouse versus human oral epithelial cells. Thus, this work provides an atlas of proteins that associate with EGFR and identifies several that play a central role in the response of human oral epithelial cells to C. albicans infection. IMPORTANCE Oral epithelial cells play a key role in the pathogenesis of oropharyngeal candidiasis. In addition to being target host cells for C. albicans adherence and invasion, they secrete proinflammatory cytokines and chemokines that recruit T cells and activated phagocytes to foci of infection. It is known that C. albicans activates EGFR on oral epithelial cells, which induces these cells to endocytose the organism and stimulates them to secrete proinflammatory mediators. To elucidate the EGFR signaling pathways that govern these responses, we analyzed the epithelial cell proteins that associate with EGFR in C. albicans-infected epithelial cells. We identified four proteins that physically associate with EGFR and that regulate different aspects of the epithelial response to C. albicans. One of these is gC1qR, which is required for C. albicans to activate EGFR, induce endocytosis, and stimulate the secretion of proinflammatory mediators, indicating that gC1qR functions as a key coreceptor with EGFR.


Rapid proliferation due to better metabolic adaptation results in full virulence of a filament-deficient Candida albicans strain.

  • Christine Dunker‎ et al.
  • Nature communications‎
  • 2021‎

The ability of the fungal pathogen Candida albicans to undergo a yeast-to-hypha transition is believed to be a key virulence factor, as filaments mediate tissue damage. Here, we show that virulence is not necessarily reduced in filament-deficient strains, and the results depend on the infection model used. We generate a filament-deficient strain by deletion or repression of EED1 (known to be required for maintenance of hyphal growth). Consistent with previous studies, the strain is attenuated in damaging epithelial cells and macrophages in vitro and in a mouse model of intraperitoneal infection. However, in a mouse model of systemic infection, the strain is as virulent as the wild type when mice are challenged with intermediate infectious doses, and even more virulent when using low infectious doses. Retained virulence is associated with rapid yeast proliferation, likely the result of metabolic adaptation and improved fitness, leading to high organ fungal loads. Analyses of cytokine responses in vitro and in vivo, as well as systemic infections in immunosuppressed mice, suggest that differences in immunopathology contribute to some extent to retained virulence of the filament-deficient mutant. Our findings challenge the long-standing hypothesis that hyphae are essential for pathogenesis of systemic candidiasis by C. albicans.


Mucosal IgA Prevents Commensal Candida albicans Dysbiosis in the Oral Cavity.

  • Nicolas Millet‎ et al.
  • Frontiers in immunology‎
  • 2020‎

The fungus Candida albicans colonizes the oral mucosal surface of 30-70% of healthy individuals. Due to local or systemic immunosuppression, this commensal fungus is able to proliferate resulting in oral disease, called oropharyngeal candidiasis (OPC). However, in healthy individuals C. albicans causes no harm. Unlike humans mice do not host C. albicans in their mycobiome. Thus, oral fungal challenge generates an acute immune response in a naive host. Therefore, we utilized C. albicans clinical isolates which are able to persist in the oral cavity without causing disease to analyze adaptive responses to oral fungal commensalism. We performed RNA sequencing to determine the transcriptional host response landscape during C. albicans colonization. Pathway analysis revealed an upregulation of adaptive host responses due to C. albicans oral persistence, including the upregulation of the immune network for IgA production. Fungal colonization increased cross-specific IgA levels in the saliva and the tongue, and IgA+ cells migrated to foci of fungal colonization. Binding of IgA prevented fungal epithelial adhesion and invasion resulting in a dampened proinflammatory epithelial response. Besides CD19+ CD138- B cells, plasmablasts, and plasma cells were enriched in the tongue of mice colonized with C. albicans suggesting a potential role of B lymphocytes during oral fungal colonization. B cell deficiency increased the oral fungal load without causing severe OPC. Thus, in the oral cavity B lymphocytes contribute to control commensal C. albicans carriage by secreting IgA at foci of colonization thereby preventing fungal dysbiosis.


Selection of Candida albicans trisomy during oropharyngeal infection results in a commensal-like phenotype.

  • Anja Forche‎ et al.
  • PLoS genetics‎
  • 2019‎

When the fungus Candida albicans proliferates in the oropharyngeal cavity during experimental oropharyngeal candidiasis (OPC), it undergoes large-scale genome changes at a much higher frequency than when it grows in vitro. Previously, we identified a specific whole chromosome amplification, trisomy of Chr6 (Chr6x3), that was highly overrepresented among strains recovered from the tongues of mice with OPC. To determine the functional significance of this trisomy, we assessed the virulence of two Chr6 trisomic strains and a Chr5 trisomic strain in the mouse model of OPC. We also analyzed the expression of virulence-associated traits in vitro. All three trisomic strains exhibited characteristics of a commensal during OPC in mice. They achieved the same oral fungal burden as the diploid progenitor strain but caused significantly less weight loss and elicited a significantly lower inflammatory host response. In vitro, all three trisomic strains had reduced capacity to adhere to and invade oral epithelial cells and increased susceptibility to neutrophil killing. Whole genome sequencing of pre- and post-infection isolates found that the trisomies were usually maintained. Most post-infection isolates also contained de novo point mutations, but these were not conserved. While in vitro growth assays did not reveal phenotypes specific to de novo point mutations, they did reveal novel phenotypes specific to each lineage. These data reveal that during OPC, clones that are trisomic for Chr5 or Chr6 are selected and they facilitate a commensal-like phenotype.


Activation of EphA2-EGFR signaling in oral epithelial cells by Candida albicans virulence factors.

  • Marc Swidergall‎ et al.
  • PLoS pathogens‎
  • 2021‎

During oropharyngeal candidiasis (OPC), Candida albicans invades and damages oral epithelial cells, which respond by producing proinflammatory mediators that recruit phagocytes to foci of infection. The ephrin type-A receptor 2 (EphA2) detects β-glucan and plays a central role in stimulating epithelial cells to release proinflammatory mediators during OPC. The epidermal growth factor receptor (EGFR) also interacts with C. albicans and is known to be activated by the Als3 adhesin/invasin and the candidalysin pore-forming toxin. Here, we investigated the interactions among EphA2, EGFR, Als3 and candidalysin during OPC. We found that EGFR and EphA2 constitutively associate with each other as part of a heteromeric physical complex and are mutually dependent for C. albicans-induced activation. Als3-mediated endocytosis of a C. albicans hypha leads to the formation of an endocytic vacuole where candidalysin accumulates at high concentration. Thus, Als3 potentiates targeting of candidalysin, and both Als3 and candidalysin are required for C. albicans to cause maximal damage to oral epithelial cells, sustain activation of EphA2 and EGFR, and stimulate pro-inflammatory cytokine and chemokine secretion. In the mouse model of OPC, C. albicans-induced production of CXCL1/KC and CCL20 is dependent on the presence of candidalysin and EGFR, but independent of Als3. The production of IL-1α and IL-17A also requires candidalysin but is independent of Als3 and EGFR. The production of TNFα requires Als1, Als3, and candidalysin. Collectively, these results delineate the complex interplay among host cell receptors EphA2 and EGFR and C. albicans virulence factors Als1, Als3 and candidalysin during the induction of OPC and the resulting oral inflammatory response.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: