2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Sumatriptan does not change calcitonin gene-related peptide in the cephalic and extracephalic circulation in healthy volunteers.

  • Jakob Møller Hansen‎ et al.
  • The journal of headache and pain‎
  • 2009‎

Triptans are effective and well tolerated in acute migraine management but their exact mechanism of action is still debated. Triptans might exert their antimigraine effect by reducing the levels of circulating calcitonin gene-related peptide (CGRP). To examine this question, we examined whether sumatriptan modulate the baseline CGRP levels in vivo, under conditions without trigeminovascular system activation. We sampled blood from the internal and external jugular, the cubital veins, and the radial artery before and after administration of subcutaneous sumatriptan in 16 healthy volunteers. Repeated-measure ANOVA showed no interaction between catheter and time of sampling and thus no significant difference in CGRP between the four catheters (P=0.75). CGRP did not change over time in the four compartments (P>0.05). The relative changes in CGRP between baseline and maximal sumatriptan concentration did not differ between the four vascular compartments (P=0.49). It was found that Sumatriptan did not change the levels of circulating CGRP in the intra or extracerebral circulation in healthy volunteers. This speaks against a direct CGRP-reducing effect of sumatriptan in vivo in humans when the trigemino vascular system is not activated.


Calcitonin Gene-Related Peptide Modulates Heat Nociception in the Human Brain - An fMRI Study in Healthy Volunteers.

  • Mohammad Sohail Asghar‎ et al.
  • PloS one‎
  • 2016‎

Intravenous infusion of calcitonin-gene-related-peptide (CGRP) provokes headache and migraine in humans. Mechanisms underlying CGRP-induced headache are not fully clarified and it is unknown to what extent CGRP modulates nociceptive processing in the brain. To elucidate this we recorded blood-oxygenation-level-dependent (BOLD) signals in the brain by functional MRI after infusion of CGRP in a double-blind placebo-controlled crossover study of 27 healthy volunteers. BOLD-signals were recorded in response to noxious heat stimuli in the V1-area of the trigeminal nerve. In addition, we measured BOLD-signals after injection of sumatriptan (5-HT1B/1D antagonist).


Effects of sildenafil and calcitonin gene-related peptide on brainstem glutamate levels: a pharmacological proton magnetic resonance spectroscopy study at 3.0 T.

  • Samaira Younis‎ et al.
  • The journal of headache and pain‎
  • 2018‎

Studies involving human pharmacological migraine models have predominantly focused on the vasoactive effects of headache-inducing drugs, including sildenafil and calcitonin gene-related peptide (CGRP). However, the role of possible glutamate level changes in the brainstem and thalamus is of emerging interest in the field of migraine research bringing forth the need for a novel, validated method to study the biochemical effects in these areas.


European headache federation guideline on the use of monoclonal antibodies acting on the calcitonin gene related peptide or its receptor for migraine prevention.

  • Simona Sacco‎ et al.
  • The journal of headache and pain‎
  • 2019‎

Monoclonal antibodies acting on the calcitonin gene-related peptide or on its receptor are new drugs to prevent migraine. Four monoclonal antibodies have been developed: one targeting the calcitonin gene-related peptide receptor (erenumab) and three targeting the calcitonin gene-related peptide (eptinezumab, fremanezumab, and galcanezumab). The aim of this document by the European Headache Federation (EHF) is to provide an evidence-based and expert-based guideline on the use of the monoclonal antibodies acting on the calcitonin gene-related peptide for migraine prevention.


Reducing Episodic Cluster Headaches: Focus on Galcanezumab.

  • Lanfranco Pellesi‎ et al.
  • Journal of pain research‎
  • 2020‎

The involvement of calcitonin gene-related peptide in migraine and cluster headache has led to the recent development of new therapies. Galcanezumab, a novel monoclonal antibody targeting the calcitonin gene-related peptide, is approved for the migraine prevention and has recently been tested for the prevention of cluster headache. Two clinical trials have been conducted to investigate the efficacy and safety of galcanezumab in episodic cluster headache and chronic cluster headache. While efficacy endpoints were not met in the chronic subtype, galcanezumab reduced the weekly frequency of attacks in patients with episodic cluster headaches. In both studies, the antibody was well tolerated. This review summarizes and critically reviews the available data regarding the rationale behind targeting the calcitonin gene-related peptide with galcanezumab for the prevention of cluster headache.


Brain barriers and their potential role in migraine pathophysiology.

  • Astrid Wiggers‎ et al.
  • The journal of headache and pain‎
  • 2022‎

Migraine is a ubiquitous neurologic disease that afflicts people of all ages. Its molecular pathogenesis involves peptides that promote intracranial vasodilation and modulate nociceptive transmission upon release from sensory afferents of cells in the trigeminal ganglion and parasympathetic efferents of cells in the sphenopalatine ganglion. Experimental data have confirmed that intravenous infusion of these vasoactive peptides induce migraine attacks in people with migraine, but it remains a point of scientific contention whether their site of action lies outside or within the central nervous system. In this context, it has been hypothesized that transient dysfunction of brain barriers before or during migraine attacks might facilitate the passage of migraine-inducing peptides into the central nervous system. Here, we review evidence suggestive of brain barrier dysfunction in migraine pathogenesis and conclude with lessons learned in order to provide directions for future research efforts.


Eptinezumab in episodic migraine: A randomized, double-blind, placebo-controlled study (PROMISE-1).

  • Messoud Ashina‎ et al.
  • Cephalalgia : an international journal of headache‎
  • 2020‎

To evaluate the efficacy and safety of eptinezumab, a humanized anti-calcitonin gene-related peptide monoclonal antibody, in the preventive treatment of episodic migraine.


Erenumab in chronic migraine with medication overuse: Subgroup analysis of a randomized trial.

  • Stewart J Tepper‎ et al.
  • Neurology‎
  • 2019‎

To determine the effect of erenumab, a human anti-calcitonin gene-related peptide receptor monoclonal antibody, in patients with chronic migraine and medication overuse.


The Effect of K ATP Channel Blocker Glibenclamide on CGRP-Induced Headache and Hemodynamic in Healthy Volunteers.

  • Hande Coskun‎ et al.
  • Frontiers in physiology‎
  • 2021‎

Calcitonin gene-related peptide (CGRP) dilates cranial arteries and triggers headache. The CGRP signaling pathway is partly dependent on activation of ATP-sensitive potassium (K ATP ) channels. Here, we investigated the effect of the K ATP channel blocker glibenclamide on CGRP-induced headache and vascular changes in healthy volunteers.


Ultra-high field MR angiography in human migraine models: a 3.0 T/7.0 T comparison study.

  • Casper Emil Christensen‎ et al.
  • The journal of headache and pain‎
  • 2019‎

Sildenafil and calcitonin gene-related peptide both dilate the intradural segments of the middle meningeal artery measured with 3.0 tesla (T) MR angiography. Here we hypothesized that an increase in field strength to 7.0 T and concomitant enhanced voxel resolution would lower variance in measurements of dilation in the intradural middle meningeal artery.


PACAP signaling is not involved in GTN- and levcromakalim-induced hypersensitivity in mouse models of migraine.

  • Song Guo‎ et al.
  • The journal of headache and pain‎
  • 2022‎

Calcitonin gene-related peptide (CGRP) antagonizing drugs represents the most important advance in migraine therapy for decades. However, these new drugs are only effective in 50-60% of patients. Recent studies have shown that the pituitary adenylate cyclase-activating peptide (PACAP38) pathway is independent from the CGRP signaling pathway. Here, we investigate PACAP38 signaling pathways in relation to glyceryl trinitrate (GTN), levcromakalim and sumatriptan.


The Registry for Migraine (REFORM) study: methodology, demographics, and baseline clinical characteristics.

  • William Kristian Karlsson‎ et al.
  • The journal of headache and pain‎
  • 2023‎

Erenumab has demonstrated effectiveness for prevention of migraine attacks, but the treatment is costly, and a considerable proportion of patients do not respond to it. The Registry for Migraine study (REFORM) was initiated to discover biomarkers that can predict response to erenumab in patients with migraine. The specific objective was to investigate differences in erenumab efficacy based on clinical information, blood-based biomarkers, structural and functional magnetic resonance imaging (MRI), and response to intravenous infusion of calcitonin gene-related peptide (CGRP). In this first report of the REFORM study, we provide a comprehensive description of the study methodology, and present the baseline characteristics of the study population.


Effect of CGRP and sumatriptan on the BOLD response in visual cortex.

  • Mohammad S Asghar‎ et al.
  • The journal of headache and pain‎
  • 2012‎

To test the hypothesis that calcitonin gene-related peptide (CGRP) modulates brain activity, we investigated the effect of intravenous CGRP on brain activity in response to a visual stimulus. In addition, we examined if possible alteration in brain activity was reversed by the anti-migraine drug sumatriptan. Eighteen healthy volunteers were randomly allocated to receive CGRP infusion (1.5 μg/min for 20 min) or placebo. In vivo activity in the visual cortex was recorded before, during and after infusion and after 6 mg subcutaneous sumatriptan by functional magnetic resonance imaging (3 T). 77% of the participants reported headache after CGRP. We found no changes in brain activity after CGRP (P = 0.12) or after placebo (P = 0.41). Sumatriptan did not affect brain activity after CGRP (P = 0.71) or after placebo (P = 0.98). Systemic CGRP or sumatriptan has no direct effects on the BOLD activity in visual cortex. This suggests that in healthy volunteers both CGRP and sumatriptan may exert their actions outside of the blood-brain barrier.


Mechanistic Investigations Support Liver Safety of Ubrogepant.

  • Brenda Smith‎ et al.
  • Toxicological sciences : an official journal of the Society of Toxicology‎
  • 2020‎

Small-molecule calcitonin gene-related peptide (CGRP) receptor antagonists have demonstrated therapeutic efficacy for the treatment of migraine. However, previously investigated CGRP receptor antagonists, telcagepant and MK-3207, were discontinued during clinical development because of concerns about drug-induced liver injury. A subsequent effort to identify novel CGRP receptor antagonists less likely to cause hepatotoxicity led to the development of ubrogepant. The selection of ubrogepant, following a series of mechanistic studies conducted with MK-3207 and telcagepant, was focused on key structural modifications suggesting that ubrogepant was less prone to forming reactive metabolites than previous compounds. The potential for each drug to cause liver toxicity was subsequently assessed using a quantitative systems toxicology approach (DILIsym) that incorporates quantitative assessments of mitochondrial dysfunction, disruption of bile acid homeostasis, and oxidative stress, along with estimates of dose-dependent drug exposure to and within liver cells. DILIsym successfully modeled liver toxicity for telcagepant and MK-3207 at the dosing regimens used in clinical trials. In contrast, DILIsym predicted no hepatotoxicity during treatment with ubrogepant, even at daily doses up to 1000 mg (10-fold higher than the approved clinical dose of 100 mg). These predictions are consistent with clinical trial experience showing that ubrogepant has lower potential to cause hepatotoxicity than has been observed with telcagepant and MK-3207.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: