Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Calcitonin gene-related peptide and its receptor components in the human sphenopalatine ganglion -- interaction with the sensory system.

  • Anett Csati‎ et al.
  • Brain research‎
  • 2012‎

Clinical studies have suggested a link between the sensory trigeminal system and the parasympathetic ganglia. Calcitonin gene-related peptide (CGRP) is a sensory neuropeptide which plays an important role in vasodilatation and pain transmission in craniocervical structures. The present study was designed to examine if CGRP and CGRP receptor components are present in the human sphenopalatine ganglion (SPG) in order to reveal an interaction between the sensory and parasympathetic systems. Indirect immunofluorescence technique was used for immunohistochemical demonstration of CGRP, the calcitonin receptor-like receptor (CLR) and the receptor activity modifying protein 1 (RAMP1) in human and rat SPG. Cryostat sections were examined and images were obtained using a light- and epifluorescence microscope coupled to a camera to visualize co-labeling by superimposing the digital images. In addition, Western blot technique was used to demonstrate the existence of CGRP receptor components in rat SPG. CGRP immunoreactive fibers were frequently found intraganglionic in the SPG in the vicinity of neurons. CLR immunoreactivity was observed in satellite glial cells (SGCs) as well as in nerve fibers, but not in neurons. RAMP1 immunoreactivity was localized in many neurons and SGCs. Thus, the two CGRP receptor components together were found in the SGCs. In addition, Western blot revealed the presence of RAMP1 and CLR in rat SPG. Our results suggest a possible sensory influence in the parasympathetic cranial ganglia. The sensory CGRP-containing fibers probably originate in the trigeminal ganglion, project to the SPG and act on CGRP receptors on SGCs.


Immunohistochemical localization of the calcitonin gene-related peptide binding site in the primate trigeminovascular system using functional antagonist antibodies.

  • Silke Miller‎ et al.
  • Neuroscience‎
  • 2016‎

Calcitonin gene-related peptide (CGRP) is a potent vasodilator and a neuromodulator implicated in the pathophysiology of migraine. It binds to the extracellular domains of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP) 1 that together form the CGRP receptor. Antagonist antibodies against CGRP and its binding site at the receptor are clinically effective in preventing migraine attacks. The blood-brain barrier penetration of these antagonist antibodies is limited, suggesting that a potential peripheral site of action is sufficient to prevent migraine attacks. To further understand the sites of CGRP-mediated signaling in migraine, we used immunohistochemical staining with recently developed antagonist antibodies specifically recognizing a fusion protein of the extracellular domains of RAMP1 and CLR that comprise the CGRP binding pocket at the CGRP receptor in monkey and man. We confirmed binding of the antagonist antibodies to human vascular smooth muscle cells (VSMCs) of dural meningeal arteries and neurons in the trigeminal ganglion, both of which are likely sites of action for therapeutic antibodies in migraine patients. We further used one of these antibodies for detailed mapping on cynomolgus monkey tissue and found antagonist antibody binding sites at multiple levels in the trigeminovascular system: in the dura mater VSMCs, in neurons and satellite glial cells in the trigeminal ganglion, and in neurons in the spinal trigeminal nucleus caudalis. These data reinforce and clarify our understanding of CGRP receptor localization in a pattern consistent with a role for CGRP receptors in trigeminal sensitization and migraine pathology.


Expression of the CGRP Family of Neuropeptides and their Receptors in the Trigeminal Ganglion.

  • Lars Edvinsson‎ et al.
  • Journal of molecular neuroscience : MN‎
  • 2020‎

The calcitonin gene-related peptide (CGRP) family of neuropeptides, consists of CGRP, adrenomedullin, amylin, and calcitonin. The receptors consist of either calcitonin receptor-like receptor (CLR) or calcitonin receptor (CTR) which for function needs an accessory protein, receptor activity-modifying proteins (RAMPs). CGRP has a pivotal role in primary headaches but the role of the other members of the CGRP family of peptides in headaches is not known. Here, we describe the expression of these molecules in the trigeminal ganglion (TG) to understand more on their possible role(s). Single or double immunohistochemistry were applied on frozen sections of rat TG using primary antibodies against CGRP, procalcitonin, calcitonin, adrenomedullin, amylin, RAMP1/2/3, CLR, and CTR. In addition, mRNA expression was measured by quantitative qPCR on TGs. CGRP and calcitonin showed rich expression in the cytoplasm of small to medium-sized neurons, and co-localized sometimes. Procalcitonin was observed in the glial cells. Immunoreactive fibers storing both CGRP and calcitonin were also observed. Adrenomedullin immunoreactivity was found in the satellite glial cells and in fibers, probably the myelinating Schwann cells. Amylin was found in the cytoplasm in many TG neurons. Levels of mRNA expression for adrenomedullin, amylin, CLR, RAMP1, RAMP2, RAMP3, and CTR were measured using qPCR. The experiments verified the expression of mRNA in the TG with the exception of CTR, which was above the limit of detection indicating little or no mRNA expression. In addition to the well-known CGRP receptor (CLR/RAMP1) and the receptor for calcitonin-CTR, we propose that other receptors exist in the rat TG: adrenomedullin receptor AM2 (CLR/RAMP3) in mainly the satellite glial cells, amylin receptors AMY1 (CTR/RAMP1) in mainly neurons, and AMY3 (CTR/RAMP3) in the satellite glial cells. It is important to compare peptides and receptors side-by-side in studies to help address questions of actions resulting from cross-reactivity between receptors. Several of the diverse biological actions of the CGRP family of peptides are clinically relevant. Our findings demonstrate the specific ligand and receptor sites in the rat trigeminal ganglion, highlighting recognition mechanisms to facilitate drug development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: