Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 36 papers

Butyrylcholinesterase-Protein Interactions in Human Serum.

  • Jacek Jasiecki‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Measuring various biochemical and cellular components in the blood is a routine procedure in clinical practice. Human serum contains hundreds of diverse proteins secreted from all cells and tissues in healthy and diseased states. Moreover, some serum proteins have specific strong interactions with other blood components, but most interactions are probably weak and transient. One of the serum proteins is butyrylcholinesterase (BChE), an enzyme existing mainly as a glycosylated soluble tetramer that plays an important role in the metabolism of many drugs. Our results suggest that BChE interacts with plasma proteins and forms much larger complexes than predicted from the molecular weight of the BChE tetramer. To investigate and isolate such complexes, we developed a two-step strategy to find specific protein-protein interactions by combining native size-exclusion chromatography (SEC) with affinity chromatography with the resin that specifically binds BChE. Second, to confirm protein complexes' specificity, we fractionated blood serum proteins by density gradient ultracentrifugation followed by co-immunoprecipitation with anti-BChE monoclonal antibodies. The proteins coisolated in complexes with BChE were identified by mass spectroscopy. These binding studies revealed that BChE interacts with a number of proteins in the human serum. Some of these interactions seem to be more stable than transient. BChE copurification with ApoA-I and the density of some fractions containing BChE corresponding to high-density lipoprotein cholesterol (HDL) during ultracentrifugation suggest its interactions with HDL. Moreover, we observed lower BChE plasma activity in individuals with severely reduced HDL levels (≤20 mg/dL). The presented two-step methodology for determination of the BChE interactions can facilitate further analysis of such complexes, especially from the brain tissue, where BChE could be involved in the pathogenesis and progression of AD.


Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase.

  • Miroslav Pohanka‎ et al.
  • International journal of molecular sciences‎
  • 2013‎

Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer disease pathology and some other effects. The effects are not well understood. In the present work, we focused on the question whether caffeine can inhibit acetylcholinesterase (AChE) and/or, butyrylcholinesterase (BChE), the two enzymes participating in cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was done for altering concentrations of caffeine. The test was supported by an in silico examination as well. Donepezil and tacrine were used as standards. In compliance with Dixon's plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was 13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be 175 ± 9 µmol/L. The predicted free energy of binding was -6.7 kcal/mol. The proposed binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the lower binding affinity of caffeine for BChE with reference to AChE. The biological relevance of the findings is discussed.


New Thienobenzo/Naphtho-Triazoles as Butyrylcholinesterase Inhibitors: Design, Synthesis and Computational Study.

  • Milena Mlakić‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

This study aims to test the inhibition potency of new thienobenzo/naphtho-triazoles toward cholinesterases, evaluate their inhibition selectivity, and interpret the obtained results by molecular modeling. The synthesis of 19 new thienobenzo/naphtho-triazoles by two different approaches resulted in a large group of molecules with different functionalities in the structure. As predicted, most prepared molecules show better inhibition of the enzyme butyrylcholinesterase (BChE), considering that the new molecules were designed according to the previous results. Interestingly, the binding affinity of BChE for even seven new compounds (1, 3, 4, 5, 6, 9, and 13) was similar to that reported for common cholinesterase inhibitors. According to computational study, the active thienobenzo- and naphtho-triazoles are accommodated by cholinesterases through H-bonds involving one of the triazole's nitrogens, π-π stacking between the aromatic moieties of the ligand and aromatic residues of the active sites of cholinesterases, as well as π-alkyl interactions. For the future design of cholinesterase inhibitors and search for therapeutics for neurological disorders, compounds with a thienobenzo/naphtho-triazole skeleton should be considered.


Novel Organoruthenium(II) Complex C1 Selectively Inhibits Butyrylcholinesterase without Side Effects on Neuromuscular Transmission.

  • Tomaž Trobec‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Enzyme butyrylcholinesterase (BChE) shows increased activity in some brain regions after progression of Alzheimer's disease and is therefore one of the therapeutic targets for symptomatic treatment of this neurodegenerative disorder. The organoruthenium(II) complex [(η6-p-cymene)Ru(II)(1-hydroxy-3-methoxypyridine-2(1H)-thionato)pta]PF6 (C1) was designed based on the results of our previous structure-activity studies. Inhibitory activity toward cholinesterase enzymes shows that this complex selectively, competitively, and reversibly inhibits horse serum BChE (hsBChE) with an IC50 value of 2.88 µM. When tested at supra-pharmacological concentrations (30, 60, 90, and 120 µM), C1 had no significant effect on the maximal amplitude of nerve-evoked and directly elicited single-twitch and tetanic contractions. At the highest tested concentration (120 µM), C1 had no effect on resting membrane potential, but significantly decreased the amplitude of miniature end-plate potentials (MEPP) without reducing their frequency. The same concentration of C1 had no effect on the amplitude of end-plate potentials (EPP), however it shortened the half-decay time of MEPPs and EPPs. The decrease in the amplitude of MEPPs and shortening of the half-decay time of MEPPs and EPPs suggest a possible weak inhibitory effect on muscle-type nicotinic acetylcholine receptors (nAChR). These combined results show that, when applied at supra-pharmacological concentrations up to 120 µM, C1 does not importantly affect the physiology of neuromuscular transmission and skeletal muscle contraction.


Effects of Kifunensine on Production and N-Glycosylation Modification of Butyrylcholinesterase in a Transgenic Rice Cell Culture Bioreactor.

  • Kantharakorn Macharoen‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The production and N-glycosylation of recombinant human butyrylcholinesterase (BChE), a model highly glycosylated therapeutic protein, in a transgenic rice cell suspension culture treated with kifunensine, a strong α-mannosidase I inhibitor, was studied in a 5 L bioreactor. A media exchange was performed at day 7 of cultivation by removing spent sugar-rich medium (NB+S) and adding fresh sugar-free (NB-S) medium to induce the rice α-amylase 3D (RAmy3D) promoter to produce rice recombinant human BChE (rrBChE). Using a 1.25X-concentrated sugar-free medium together with an 80% reduced working volume during the media exchange led to a total active rrBChE production level of 79 ± 2 µg (g FW)-1 or 7.5 ± 0.4 mg L-1 in the presence of kifunensine, which was 1.5-times higher than our previous bioreactor runs using normal sugar-free (NB-S) media with no kifunensine treatment. Importantly, the amount of secreted active rrBChE in culture medium was enhanced in the presence of kifunensine, comprising 44% of the total active rrBChE at day 5 following induction. Coomassie-stained SDS-PAGE gel and Western blot analyses revealed different electrophoretic migration of purified rrBChE bands with and without kifunensine treatment, which was attributed to different N-glycoforms. N-Glycosylation analysis showed substantially increased oligomannose glycans (Man5/6/7/8) in rrBChE treated with kifunensine compared to controls. However, the mass-transfer limitation of kifunensine was likely the major reason for incomplete inhibition of α-mannosidase I in this bioreactor study.


Amaryllidaceae Alkaloids of Norbelladine-Type as Inspiration for Development of Highly Selective Butyrylcholinesterase Inhibitors: Synthesis, Biological Activity Evaluation, and Docking Studies.

  • Abdullah Al Mamun‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Alzheimer's disease (AD) is a multifactorial neurodegenerative condition of the central nervous system (CNS) that is currently treated by cholinesterase inhibitors and the N-methyl-d-aspartate receptor antagonist, memantine. Emerging evidence strongly supports the relevance of targeting butyrylcholinesterase (BuChE) in the more advanced stages of AD. Within this study, we have generated a pilot series of compounds (1-20) structurally inspired from belladine-type Amaryllidaceae alkaloids, namely carltonine A and B, and evaluated their acetylcholinesterase (AChE) and BuChE inhibition properties. Some of the compounds exhibited intriguing inhibition activity for human BuChE (hBuChE), with a preference for BuChE over AChE. Seven compounds were found to possess a hBuChE inhibition profile, with IC50 values below 1 µM. The most potent one, compound 6, showed nanomolar range activity with an IC50 value of 72 nM and an excellent selectivity pattern over AChE, reaching a selectivity index of almost 1400. Compound 6 was further studied by enzyme kinetics, along with in-silico techniques, to reveal the mode of inhibition. The prediction of CNS availability estimates that all the compounds in this survey can pass through the blood-brain barrier (BBB), as disclosed by the BBB score.


Serotonin 5-HT6 Receptor Ligands and Butyrylcholinesterase Inhibitors Displaying Antioxidant Activity-Design, Synthesis and Biological Evaluation of Multifunctional Agents against Alzheimer's Disease.

  • Krzysztof Więckowski‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Neurodegeneration leading to Alzheimer's disease results from a complex interplay of a variety of processes including misfolding and aggregation of amyloid beta and tau proteins, neuroinflammation or oxidative stress. Therefore, to address more than one of these, drug discovery programmes focus on the development of multifunctional ligands, preferably with disease-modifying and symptoms-reducing potential. Following this idea, herein we present the design and synthesis of multifunctional ligands and biological evaluation of their 5-HT6 receptor affinity (radioligand binding assay), cholinesterase inhibitory activity (spectroscopic Ellman's assay), antioxidant activity (ABTS assay) and metal-chelating properties, as well as a preliminary ADMET properties evaluation. Based on the results we selected compound 14 as a well-balanced and potent 5-HT6 receptor ligand (Ki = 22 nM) and human BuChE inhibitor (IC50 = 16 nM) with antioxidant potential expressed as a reduction of ABTS radicals by 35% (150 μM). The study also revealed additional metal-chelating properties of compounds 15 and 18. The presented compounds modulating Alzheimer's disease-related processes might be further developed as multifunctional ligands against the disease.


Effect of several new and currently available oxime cholinesterase reactivators on tabun-intoxicated rats.

  • Jana Zdarova Karasova‎ et al.
  • International journal of molecular sciences‎
  • 2008‎

The therapeutical efficacies of eleven oxime-based acetylcholinesterase reactivators were compared in an in vivo (rat model) study of treatment of intoxication caused by tabun. In this group there were some currently available oximes (obidoxime, trimedoxime and HI-6) and the rest were newly synthesized compounds. The best reactivation efficacy for acetylcholinesterase in blood (expressed as percent of reactivation) among the currently available oximes was observed after administration of trimedoxime (16%) and of the newly synthesized K127 (22432) (25%). The reactivation of butyrylcholinesterase in plasma was also studied; the best reactivators were trimedoxime, K117 (22435), and K127 (22432), with overall reactivation efficacies of approximately 30%. Partial protection of brain ChE against tabun inhibition was observed after administration of trimedoxime (acetylcholinesterase 20%; butyrylcholinesterase 30%) and obidoxime (acetylcholinesterase 12%; butyrylcholinesterase 16%).


Effect of seven newly synthesized and currently available oxime cholinesterase reactivators on cyclosarin-intoxicated rats.

  • Jana Zdarova Karasova‎ et al.
  • International journal of molecular sciences‎
  • 2009‎

Seven new oxime-based acetylcholinesterase reactivators were compared with three currently available ones (obidoxime, trimedoxime, HI-6) for their ability to lessen cholinesterase inhibition in blood and brain of cyclosarin-treated rats. Oximes were given at doses of 5% their LD(50) along with 21 mg/kg atropine five min before the LD(50) of cyclosarin (120 ug/kg) was administered. Blood and brain samples were collected 30 minutes later. The greatest difference between acetylcholinesterase inhibition in blood of cyclosarin-treated rats was found after administration of HI-6 (40%), compared to 22% for trimedoxime and 6% for obidoxime. Only two of the seven newly synthesized oximes had any effect (K203 at 7%, K156 at 5%). Effective oximes against cyclosarin-inhibited plasma butyrylcholinesterase were HI-6 (42%), trimedoxime (11%), and K156 (4%). The oximes were less effective in brain than in blood, with reactivation values for HI-6 30% against acetylcholinesterase and 10% against butyrylcholinesterase. Values for newly synthesized oximes were less than 10% for K206, K269 and K203.


Norditerpenoids with Selective Anti-Cholinesterase Activity from the Roots of Perovskia atriplicifolia Benth.

  • Sylwester Ślusarczyk‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Inhibition of cholinesterases remains one of a few available treatment strategies for neurodegenerative dementias such as Alzheimer's disease and related conditions. The current study was inspired by previous data on anticholinesterase properties of diterpenoids from Perovskia atriplicifolia and other Lamiaceae species. The acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition by the three new natural compounds-(1R,15R)-1-acetoxycryptotanshinone (1), (1R)-1-acetoxytanshinone IIA (2), and (15R)-1-oxoaegyptinone A (3)-as well as, new for this genus, isograndifoliol (4) were assessed. Three of these compounds exhibited profound inhibition of butyrylcholinesterase (BChE) and much weaker inhibition of acetylcholinesterase (AChE). All compounds (1-4) selectively inhibited BChE (IC50 = 2.4, 7.9, 50.8, and 0.9 µM, respectively), whereas only compounds 3 and 4 moderately inhibited AChE (IC50 329.8 µM and 342.9 µM). Molecular docking and in silico toxicology prediction studies were also performed on the active compounds. Natural oxygenated norditerpenoids from the traditional Central Asian medicinal plant P. atriplicifolia are selective BChE inhibitors. Their high potential makes them useful candidate molecules for further investigation as lead compounds in the development of a natural drug against dementia caused by neurodegenerative diseases.


Targeting Alzheimer's Disease: Evaluating the Efficacy of C-1 Functionalized N-Aryl-Tetrahydroisoquinolines as Cholinergic Enzyme Inhibitors and Promising Therapeutic Candidates.

  • Dunja Jovanović‎ et al.
  • International journal of molecular sciences‎
  • 2024‎

We have synthesized 22 C-1 functionalized-N-aryl-1,2,3,4-tetrahydroisoquinoline derivatives showing biological activities towards cholinergic enzymes. Synthesis was performed using visible-light-promoted photo-redox chemistry, starting from a common intermediate, and the application of this synthetic methodology drastically simplified synthetic routes and purification of desired compounds. All synthesized derivates were divided into four groups based on the substituents in the C-1 position, and their inhibition potencies towards two cholinergic enzymes, acetyl- and butyrylcholinesterase were evaluated. Most potent derivatives were selected, and kinetic analysis was further carried out to obtain insights into the mechanisms of inhibition of these two enzymes. Further validation of the mode of inhibition of cholinergic enzymes by the two most potent THIQ compounds, 3c and 3i, was performed using fluorescence-quenching titration studies. Molecular docking studies further confirmed the proposed mechanism of enzymes' inhibition. In silico predictions of physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of the selected most potent derivatives were performed using Swiss ADME tool. This was followed by UPLC-assisted log P determination and in vitro BBB permeability studies performed in order to assess the potential of the synthesized compounds to pass the BBB.


Acetylcholinesterase Inhibition of Diversely Functionalized Quinolinones for Alzheimer's Disease Therapy.

  • Óscar M Bautista-Aguilera‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

In this communication, we report the synthesis and cholinesterase (ChE)/monoamine oxidase (MAO) inhibition of 19 quinolinones (QN1-19) and 13 dihydroquinolinones (DQN1-13) designed as potential multitarget small molecules (MSM) for Alzheimer's disease therapy. Contrary to our expectations, none of them showed significant human recombinant MAO inhibition, but compounds QN8, QN9, and DQN7 displayed promising human recombinant acetylcholinesterase (hrAChE) and butyrylcholinesterase (hrBuChE) inhibition. In particular, molecule QN8 was found to be a potent and quite selective non-competitive inhibitor of hrAChE (IC50 = 0.29 µM), with Ki value in nanomolar range (79 nM). Pertinent docking analysis confirmed this result, suggesting that this ligand is an interesting hit for further investigation.


Design, Spectroscopy, and Assessment of Cholinesterase Inhibition and Antimicrobial Activities of Novel Coumarin-Thiadiazole Hybrids.

  • Dariusz Karcz‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

A novel series of coumarin-thiadiazole hybrids, derived from substituted coumarin-3-carboxylic acids was isolated and fully characterized with the use of a number of spectroscopic techniques and XRD crystallography. Several of the novel compounds showed intensive fluorescence in the visible region, comparable to that of known coumarin-based fluorescence standards. Moreover, the new compounds were tested as potential antineurodegenerative agents via their ability to act as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. Compared to the commercial standards, only a few compounds demonstrated moderate AChE and BuChE activities. Moreover, the novel derivatives were tested for their antimicrobial activity against a panel of pathogenic bacterial and fungal species. Their lack of activity and toxicity across a broad range of biochemical assays, together with the exceptional emission of some hybrid molecules, highlights the possible use of a number of the novel hybrids as potential fluorescence standards or fluorescence imaging agents.


Can Activation of Acetylcholinesterase by β-Amyloid Peptide Decrease the Effectiveness of Cholinesterase Inhibitors?

  • Irina V Zueva‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

A central event in the pathogenesis of Alzheimer's disease (AD) is the accumulation of senile plaques composed of aggregated amyloid-β (Aβ) peptides. The main class of drugs currently used for the treatment of AD are the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. In this study, it has been shown that Aβ augmented AChE activity in vitro, maximum activation of 548 ± 5% was achieved following 48 h of incubation with 10 μM of Aβ1-40, leading to a 7.7-fold increase in catalytic efficiency. The observed non-competitive type of AChE activation by Aβ1-40 was associated with increased Vmax and unchanged Km. Although BChE activity also increased following incubation with Aβ1-40, this was less efficiently achieved as compared with AChE. Ex vivo electrophysiological experiments showed that 10 μM of Aβ1-40 significantly decreased the effect of the AChE inhibitor huperzine A on the synaptic potential parameters.


Vitamin B3-Based Biologically Active Compounds as Inhibitors of Human Cholinesterases.

  • Antonio Zandona‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

We evaluated the potential of nine vitamin B3 scaffold-based derivatives as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors, as a starting point for the development of novel drugs for treating disorders with cholinergic neurotransmission-linked pathology. As the results indicate, all compounds reversibly inhibited both enzymes in the micromolar range pointing to the preference of AChE over BChE for binding the tested derivatives. Molecular docking studies revealed the importance of interactions with AChE active site residues Tyr337 and Tyr124, which dictated most of the observed differences. The most potent inhibitor of both enzymes with Ki of 4 μM for AChE and 8 μM for BChE was the nicotinamide derivative 1-(4'-phenylphenacyl)-3-carbamoylpyridinium bromide. Such a result places it within the range of several currently studied novel cholinesterase inhibitors. Cytotoxicity profiling did not classify this compound as highly toxic, but the induced effects on cells should not be neglected in any future detailed studies and when considering this scaffold for drug development.


Synthesis of Hantzsch Adducts as Cholinesterases and Calcium Flux inhibitors, Antioxidants and Neuroprotectives.

  • Irene Pachón Angona‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

We report herein the design, synthesis, biological evaluation, and molecular modelling of new inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), able to block Ca+2 channels also showing antioxidant and neuroprotective activities. The new MTDL, dialkyl 2,6-dimethyl-4-(4-((5-aminoalkyl)oxy)phenyl)-1,4-dihydropyridine-3,5-dicarboxylate 3a-p, have been obtained via Hantzsch reaction from appropriate and commercially available precursors. Pertinent biological analysis has prompted us to identify MTDL 3h [dimethyl-4-(4-((5-(4-benzylpiperidin-1-yl)pentyl)oxy)phenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate] as an attractive inhibitor of AChE (1.8 μM) and BuChE (2 μM), Ca+2 channel antagonist (47.72% at 10 μM), and antioxidant (2.54 TE) agent, showing significant neuroprotection 28.68% and 38.29% against H2O2, and O/R, respectively, at 0.3 μM, thus being considered a hit-compound for further investigation in our search for anti-Alzheimer's disease agents.


In Vitro Evaluation and Docking Studies of 5-oxo-5H-furo[3,2-g]chromene-6-carbaldehyde Derivatives as Potential Anti-Alzheimer's Agents.

  • Malose J Mphahlele‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

A series of novel 2-carbo-substituted 5-oxo-5H-furo[3,2-g]chromene-6-carbaldehydes and their 6-(4-trifluoromethyl)phenylhydrazono derivatives have been prepared and evaluated for biological activity against the human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The most active compounds from each series were, in turn, evaluated against the following enzyme targets involved in Alzheimer's disease, β-secretase (BACE-1) and lipoxygenase-15 (LOX-15), as well as for anti-oxidant potential. Based on the in vitro results of ChE and β-secretase inhibition, the kinetic studies were conducted to determine the mode of inhibition by these compounds. 2-(4-Methoxyphenyl)-5-oxo-5H-furo[3,2-g]chromene-6-carbaldehyde (2f), which exhibited significant inhibitory effect against all these enzymes was also evaluated for activity against the human lipoxygenase-5 (LOX-5). The experimental results were complemented with molecular docking into the active sites of these enzymes. Compound 2f was also found to be cytotoxic against the breast cancer MCF-7 cell line.


The Proof-of-Concept of MBA121, a Tacrine-Ferulic Acid Hybrid, for Alzheimer's Disease Therapy.

  • Emelina R Rodríguez-Ruiz‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Great effort has been devoted to the synthesis of novel multi-target directed tacrine derivatives in the search of new treatments for Alzheimer's disease (AD). Herein we describe the proof of concept of MBA121, a compound designed as a tacrine-ferulic acid hybrid, and its potential use in the therapy of AD. MBA121 shows good β-amyloid (Aβ) anti-aggregation properties, selective inhibition of human butyrylcholinesterase, good neuroprotection against toxic insults, such as Aβ1-40, Aβ1-42, and H2O2, and promising ADMET properties that support translational developments. A passive avoidance task in mice with experimentally induced amnesia was carried out, MBA121 being able to significantly decrease scopolamine-induced learning deficits. In addition, MBA121 reduced the Aβ plaque burden in the cerebral cortex and hippocampus in APPswe/PS1ΔE9 transgenic male mice. Our in vivo results relate its bioavailability with the therapeutic response, demonstrating that MBA121 is a promising agent to treat the cognitive decline and neurodegeneration underlying AD.


2,3-dihydro-1H-cyclopenta[b]quinoline derivatives as acetylcholinesterase inhibitors-synthesis, radiolabeling and biodistribution.

  • Paweł Szymański‎ et al.
  • International journal of molecular sciences‎
  • 2012‎

In the present study we describe the synthesis and biological assessment of new tacrine analogs in the course of inhibition of acetylcholinesterase. The obtained molecules were synthesized in a condensation reaction between activated 6-BOC-hydrazinopyridine-3-carboxylic acid and 8-aminoalkyl derivatives of 2,3-dihydro-1H-cyclopenta[b]quinoline. Activities of the newly synthesized compounds were estimated by means of Ellman's method. Compound 6h (IC(50) = 3.65 nM) was found to be most active. All obtained novel compounds present comparable activity to that of tacrine towards acetylcholinesterase (AChE) and, simultaneously, lower activity towards butyrylcholinesterase (BChE). Apart from 6a, all synthesized compounds are characterized by a higher affinity for AChE and a lower affinity for BChE in comparison with tacrine. Among all obtained molecules, compound 6h presented the highest selectivity towards inhibition of acetylcholinesterase. Molecular modeling showed that all compounds demonstrated a similar binding mode with AChE and interacted with catalytic and peripheral sites of AChE. Also, a biodistribution study of compound 6a radiolabeled with (99m)Tc was performed.


Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients.

  • Maria Di Bari‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Multiple sclerosis (MS) is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh) contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS) patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNFα, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNFα, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD), is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: