Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Mesenchymal Stromal Cells Are More Effective Than Their Extracellular Vesicles at Reducing Lung Injury Regardless of Acute Respiratory Distress Syndrome Etiology.

  • Johnatas D Silva‎ et al.
  • Stem cells international‎
  • 2019‎

Although mesenchymal stromal cells (MSCs) have demonstrated beneficial effects on experimental acute respiratory distress syndrome (ARDS), preconditioning may be required to potentiate their therapeutic effects. Additionally, administration of cell-free products, such as extracellular vesicles (EVs) obtained from MSC-conditioned media, might be as effective as MSCs. In this study, we comparatively evaluated the effects of MSCs, preconditioned or not with serum collected from mice with pulmonary or extrapulmonary ARDS (ARDSp and ARDSexp, respectively), and the EVs derived from these cells on lung inflammation and remodeling in ARDSp and ARDSexp mice. Administration of MSCs (preconditioned or not), but not their EVs, reduced static lung elastance, interstitial edema, and collagen fiber content in both ARDSp and ARDSexp. Although MSCs and EVs reduced alveolar collapse and neutrophil cell counts in lung tissue, therapeutic responses were superior in mice receiving MSCs, regardless of preconditioning. Despite higher total cell, macrophage, and neutrophil counts in bronchoalveolar lavage fluid in ARDSp than ARDSexp, MSCs and EVs (preconditioned or not) led to a similar decrease. In ARDSp, both MSCs and EVs, regardless of preconditioning, reduced levels of tumor necrosis factor- (TNF-) α, interleukin-6, keratinocyte chemoattractant (KC), vascular endothelial growth factor (VEGF), and transforming growth factor- (TGF-) β in lung homogenates. In ARDSexp, TNF-α, interleukin-6, and KC levels were reduced by MSCs and EVs, preconditioned or not; only MSCs reduced VEGF levels, while TGF-β levels were similarly increased in ARDSexp treated either with saline, MSCs, or EVs, regardless of preconditioning. In conclusion, MSCs yielded greater overall improvement in ARDS in comparison to EVs derived from the same number of cells and regardless of the preconditioning status. However, the effects of MSCs and EVs differed according to ARDS etiology.


Bosutinib Therapy Ameliorates Lung Inflammation and Fibrosis in Experimental Silicosis.

  • Priscila J Carneiro‎ et al.
  • Frontiers in physiology‎
  • 2017‎

Silicosis is an occupational lung disease for which no effective therapy exists. We hypothesized that bosutinib, a tyrosine kinase inhibitor, might ameliorate inflammatory responses, attenuate pulmonary fibrosis, and thus improve lung function in experimental silicosis. For this purpose, we investigated the potential efficacy of bosutinib in the treatment of experimental silicosis induced in C57BL/6 mice by intratracheal administration of silica particles. After 15 days, once disease was established, animals were randomly assigned to receive DMSO or bosutinib (1 mg/kg/dose in 0.1 mL 1% DMSO) by oral gavage, twice daily for 14 days. On day 30, lung mechanics and morphometry, total and differential cell count in alveolar septa and granuloma, levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-4, transforming growth factor (TGF)-β, and vascular endothelial growth factor in lung homogenate, M1 and M2 macrophages, total leukocytes, and T cells in BALF, lymph nodes, and thymus, and collagen fiber content in alveolar septa and granuloma were analyzed. In a separate in vitro experiment, RAW264.7 macrophages were exposed to silica particles in the presence or absence of bosutinib. After 24 h, gene expressions of arginase-1, IL-10, IL-12, inducible nitric oxide synthase (iNOS), metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinase (TIMP)-1, and caspase-3 were evaluated. In vivo, in silicotic animals, bosutinib, compared to DMSO, decreased: (1) fraction area of collapsed alveoli, (2) size and number of granulomas, and mononuclear cell granuloma infiltration; (3) IL-1β, TNF-α, IFN-γ, and TGF-β levels in lung homogenates, (4) collagen fiber content in lung parenchyma, and (5) viscoelastic pressure and static lung elastance. Bosutinib also reduced M1 cell counts while increasing M2 macrophage population in both lung parenchyma and granulomas. Total leukocyte, regulatory T, CD4+, and CD8+ cell counts in the lung-draining lymph nodes also decreased with bosutinib therapy without affecting thymus cellularity. In vitro, bosutinib led to a decrease in IL-12 and iNOS and increase in IL-10, arginase-1, MMP-9, and TIMP-1. In conclusion, in the current model of silicosis, bosutinib therapy yielded beneficial effects on lung inflammation and remodeling, therefore resulting in lung mechanics improvement. Bosutinib may hold promise for silicosis; however, further studies are required.


Comparison between sevoflurane and propofol on immunomodulation in an in vitro model of sepsis.

  • Tainá B Oliveira‎ et al.
  • Frontiers in medicine‎
  • 2023‎

Patients with sepsis often require sedation and/or anesthesia. Although the immunomodulatory effects of anesthetics have been increasingly recognized, the molecular mechanisms require better elucidation. We compared the effects of sevoflurane with propofol on the expression of pro- and anti-inflammatory biomarkers released by monocytes/macrophages and blood/bronchoalveolar lavage fluid (BALF) neutrophils, the phagocytic capacity of monocytes/ macrophages, and neutrophil migration, as well as mediators associated with alveolar epithelial and endothelial cells obtained from rats with sepsis.


Impact of one versus two doses of mesenchymal stromal cells on lung and cardiovascular repair in experimental emphysema.

  • Hananda A Poggio‎ et al.
  • Stem cell research & therapy‎
  • 2018‎

A single administration of mesenchymal stromal cells (MSCs) has been shown to reduce lung inflammation in experimental elastase-induced emphysema; however, effects were limited in terms of lung-tissue repair and cardiac function improvement. We hypothesized that two doses of MSCs could induce further lung and cardiovascular repair by mitigating inflammation and remodeling in a model of emphysema induced by multiple elastase instillations. We aimed to comparatively investigate the effects of one versus two doses of MSCs, administered 1 week apart, in a murine model of elastase-induced emphysema.


Impact of obesity on airway and lung parenchyma remodeling in experimental chronic allergic asthma.

  • Simone A Saraiva‎ et al.
  • Respiratory physiology & neurobiology‎
  • 2011‎

The impact of obesity on the inflammatory process has been described in asthma, however little is known about the influence of diet-induced obesity on lung remodeling. For this purpose, 56 recently weaned A/J mice were randomly divided into 2 groups. In the C group, mice were fed a standard chow diet, while OB animals received isocaloric high-fat diet to reach 1.5 of the mean body weight of C. After 12 weeks, each group was further randomized to be sensitized and challenged with ovalbumin (OVA) or saline. Twenty-four hours after the last challenge, collagen fiber content in airways and lung parenchyma, the volume proportion of smooth muscle-specific actin in alveolar ducts and terminal bronchiole, and the number of eosinophils in bronchoalveolar lavage fluid were higher in OB-OVA than C-OVA. In conclusion, diet-induced obesity enhanced lung remodeling resulting in higher airway responsiveness in the present experimental chronic allergic asthma.


Degree of endothelium injury promotes fibroelastogenesis in experimental acute lung injury.

  • Mônica C M Chao‎ et al.
  • Respiratory physiology & neurobiology‎
  • 2010‎

We tested the hypothesis that at the early phase of acute lung injury (ALI) the degree of endothelium injury may predict lung parenchyma remodelling. For this purpose, two models of extrapulmonary ALI induced by Escherichia coli lipopolysaccharide (ALI-LPS) or cecal ligation and puncture (ALI-CLP) were developed in mice. At day 1, these models had similar degrees of lung mechanical compromise, epithelial damage, and intraperitoneal inflammation, but endothelial lesion was greater in ALI-CLP. A time course analysis revealed, at day 7: ALI-CLP had higher degrees of epithelial lesion, denudation of basement membrane, endothelial damage, elastic and collagen fibre content, neutrophils in bronchoalveolar lavage fluid (BALF), peritoneal fluid and blood, levels of interleukin-6, KC (murine analogue of IL-8), and transforming growth factor-β in BALF. Conversely, the number of lung apoptotic cells was similar in both groups. In conclusion, the intensity of fibroelastogenesis was affected by endothelium injury in addition to the maintenance of epithelial damage and intraperitoneal inflammation.


Lung inflammatory environments differentially alter mesenchymal stromal cell behavior.

  • Soraia C Abreu‎ et al.
  • American journal of physiology. Lung cellular and molecular physiology‎
  • 2019‎

Mesenchymal stromal (stem) cells (MSCs) are increasingly demonstrated to ameliorate experimentally induced lung injuries through disease-specific anti-inflammatory actions, thus suggesting that different in vivo inflammatory environments can influence MSC actions. To determine the effects of different representative inflammatory lung conditions, human bone marrow-derived MSCs (hMSCs) were exposed to in vitro culture conditions from bronchoalveolar lavage fluid (BALF) samples obtained from patients with either the acute respiratory distress syndrome (ARDS) or with other lung diseases including acute respiratory exacerbations of cystic fibrosis (CF) (non-ARDS). hMSCs were subsequently assessed for time- and BALF concentration-dependent effects on mRNA expression of selected pro- and anti-inflammatory mediators, and for overall patterns of gene and mRNA expression. Both common and disease-specific patterns were observed in gene expression of different hMSC mediators, notably interleukin (IL)-6. Conditioned media obtained from non-ARDS BALF-exposed hMSCs was more effective in promoting an anti-inflammatory phenotype in monocytes than was conditioned media from ARDS BALF-exposed hMSCs. Neutralizing IL-6 in the conditioned media promoted generation of anti-inflammatory monocyte phenotype. This proof of concept study suggest that different lung inflammatory environments potentially can alter hMSC behaviors. Further identification of these interactions and the driving mechanisms may influence clinical use of MSCs for treating lung diseases.


Differential effects of the cystic fibrosis lung inflammatory environment on mesenchymal stromal cells.

  • Soraia C Abreu‎ et al.
  • American journal of physiology. Lung cellular and molecular physiology‎
  • 2020‎

Growing evidence demonstrates that human mesenchymal stromal cells (MSCs) modify their in vivo anti-inflammatory actions depending on the specific inflammatory environment encountered. Understanding this better is crucial to refine MSC-based cell therapies for lung and other diseases. Using acute exacerbations of cystic fibrosis (CF) lung disease as a model, the effects of ex vivo MSC exposure to clinical bronchoalveolar lavage fluid (BALF) samples, as a surrogate for the in vivo clinical lung environment, on MSC viability, gene expression, secreted cytokines, and mitochondrial function were compared with effects of BALF collected from healthy volunteers. CF BALF samples that cultured positive for Aspergillus sp. (Asp) induced rapid MSC death, usually within several hours of exposure. Further analyses suggested the fungal toxin gliotoxin as a potential mediator contributing to CF BALF-induced MSC death. RNA sequencing analyses of MSCs exposed to either Asp+ or Asp- CF BALF samples identified a number of differentially expressed transcripts, including those involved in interferon signaling, antimicrobial gene expression, and cell death. Toxicity did not correlate with bacterial lung infections. These results suggest that the potential use of MSC-based cell therapies for CF or other lung diseases may not be warranted in the presence of Aspergillus.


Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma.

  • Francieli Vuolo‎ et al.
  • European journal of pharmacology‎
  • 2019‎

Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Asthma remains a major public health problem and, at present, there are no effective interventions capable of reversing airway remodelling. Cannabidiol (CBD) is known to exert immunomodulatory effects through the activation of cannabinoid-1 and - 2 (CB1 and CB2) receptors located in the central nervous system and immune cells, respectively. However, as the role of CBD on airway remodelling and the mechanisms of CB1 and CB2 aren't fully elucidated, this study was designed to evaluate the effects of cannabidiol in this scenario. Allergic asthma was induced in Balb/c mice exposed to ovalbumin, and respiratory mechanics, collagen fibre content in airway and alveolar septa, cytokine levels, and CB1 and CB2 expression were determined. Moreover, expressions of CB1 and CB2 in induced sputum of asthmatic individuals and their correlation with airway inflammation and lung function were also evaluated. CBD treatment, regardless of dosage, decreased airway hyperresponsiveness, whereas static lung elastance only reduced with high dose. These outcomes were accompanied by decreases in collagen fibre content in both airway and alveolar septa and the expression of markers associated with inflammation in the bronchoalveolar lavage fluid and lung homogenate. There was a significant and inverse correlation between CB1 levels and lung function in asthmatic patients. CBD treatment decreased the inflammatory and remodelling processes in the model of allergic asthma. The mechanisms of action appear to be mediated by CB1/CB2 signalling, but these receptors may act differently on lung inflammation and remodelling.


Serum from Asthmatic Mice Potentiates the Therapeutic Effects of Mesenchymal Stromal Cells in Experimental Allergic Asthma.

  • Soraia C Abreu‎ et al.
  • Stem cells translational medicine‎
  • 2019‎

Asthma is a chronic inflammatory disease characterized by airway inflammation and remodeling, which can lead to progressive decline of lung function. Although mesenchymal stromal cells (MSCs) have shown beneficial immunomodulatory properties in preclinical models of allergic asthma, effects on airway remodeling have been limited. Mounting evidence suggests that prior exposure of MSCs to specific inflammatory stimuli or environments can enhance their immunomodulatory properties. Therefore, we investigated whether stimulating MSCs with bronchoalveolar lavage fluid (BALF) or serum from asthmatic mice could potentiate their therapeutic properties in experimental asthma. In a house dust mite (HDM) extract asthma model in mice, unstimulated, asthmatic BALF-stimulated, or asthmatic serum-stimulated MSCs were administered intratracheally 24 hours after the final HDM challenge. Lung mechanics and histology; BALF protein, cellularity, and biomarker levels; and lymph-node and bone marrow cellularity were assessed. Compared with unstimulated or BALF-stimulated MSCs, serum-stimulated MSCs further reduced BALF levels of interleukin (IL)-4, IL-13, and eotaxin, total and differential cellularity in BALF, bone marrow and lymph nodes, and collagen fiber content, while increasing BALF IL-10 levels and improving lung function. Serum stimulation led to higher MSC apoptosis, expression of various mediators (transforming growth factor-β, interferon-γ, IL-10, tumor necrosis factor-α-stimulated gene 6 protein, indoleamine 2,3-dioxygenase-1, and IL-1 receptor antagonist), and polarization of macrophages to M2 phenotype. In conclusion, asthmatic serum may be a novel strategy to potentiate therapeutic effects of MSCs in experimental asthma, leading to further reductions in both inflammation and remodeling than can be achieved with unstimulated MSCs. Stem Cells Translational Medicine 2019;8:301&312.


Multiple doses of adipose tissue-derived mesenchymal stromal cells induce immunosuppression in experimental asthma.

  • Ligia L Castro‎ et al.
  • Stem cells translational medicine‎
  • 2020‎

In experimental house dust mite (HDM)-induced allergic asthma, therapeutic administration of a single dose of adipose tissue-derived mesenchymal stromal cells (MSCs) ameliorates lung inflammation but is unable to reverse remodeling. We hypothesized that multiple doses of MSCs might exert better therapeutic effects by reducing lung inflammation and remodeling but might also result in immunosuppressive effects in experimental asthma. HDM was administered intranasally in C57BL/6 mice. After the last HDM challenge, mice received two or three doses of MSCs (105 cells per day) or saline intravenously. An additional cohort of mice received dexamethasone as a positive control for immunosuppression. Two and three doses of MSCs reduced lung inflammation, levels of interleukin (IL)-4, IL-13, and eotaxin; total leukocyte, CD4+ T-cell, and eosinophil counts in bronchoalveolar lavage fluid; and total leukocyte counts in bone marrow, spleen, and mediastinal lymph nodes. Two and three doses of MSCs also reduced collagen fiber content and transforming growth factor-β levels in lung tissue; however, the three-dose regimen was more effective, and reduced these parameters to control levels, while also decreasing α-actin content in lung tissue. Two and three doses of MSCs improved lung mechanics. Dexamethasone, two and three doses of MSCs similarly increased galectin levels, but only the three-dose regimen increased CD39 levels in the thymus. Dexamethasone and the three-dose, but not the two-dose regimen, also increased levels of programmed death receptor-1 and IL-10, while reducing CD4+ CD8low cell percentage in the thymus. In conclusion, multiple doses of MSCs reduced lung inflammation and remodeling while causing immunosuppression in HDM-induced allergic asthma.


Effects of Obesity on Pulmonary Inflammation and Remodeling in Experimental Moderate Acute Lung Injury.

  • Lígia de A Maia‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Obese patients are at higher risk of developing acute respiratory distress syndrome (ARDS); however, their survival rates are also higher compared to those of similarly ill non-obese patients. We hypothesized that obesity would not only prevent lung inflammation, but also reduce remodeling in moderate endotoxin-induced acute lung injury (ALI). Obesity was induced by early postnatal overfeeding in Wistar rats in which the litter size was reduced to 3 pups/litter (Obese, n = 18); Control animals (n = 18) were obtained from unculled litters. On postnatal day 150, Control, and Obese animals randomly received E. coli lipopolysaccharide (ALI) or saline (SAL) intratracheally. After 24 h, echocardiography, lung function and morphometry, and biological markers in lung tissue were evaluated. Additionally, mediator expression in neutrophils and macrophages obtained from blood and bronchoalveolar lavage fluid (BALF) was analyzed. Compared to Control-SAL animals, Control-ALI rats showed no changes in echocardiographic parameters, increased lung elastance and resistance, higher monocyte phagocytic capacity, collagen fiber content, myeloperoxidase (MPO) activity, and levels of interleukin (IL-6), tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, and type III (PCIII), and I (PCI) procollagen in lung tissue, as well as increased expressions of TNF-α and monocyte chemoattractant protein (MCP)-1 in blood and BALF neutrophils. Monocyte (blood) and macrophage (adipose tissue) phagocytic capacities were lower in Obese-ALI compared to Control-ALI animals, and Obese animals exhibited reduced neutrophil migration compared to Control. Obese-ALI animals, compared to Obese-SAL, exhibited increased interventricular septum thickness (p = 0.003) and posterior wall thickness (p = 0.003) and decreased pulmonary acceleration time to pulmonary ejection time ratio (p = 0.005); no changes in lung mechanics, IL-6, TNF-α, TGF-β, PCIII, and PCI in lung tissue; increased IL-10 levels in lung homogenate (p = 0.007); reduced MCP-1 expression in blood neutrophils (p = 0.009); decreased TNF-α expression in blood (p = 0.02) and BALF (p = 0.008) neutrophils; and increased IL-10 expression in monocytes (p = 0.004). In conclusion, after endotoxin challenge, obese rats showed less deterioration of lung function, secondary to anti-inflammatory and anti-fibrotic effects, as well as changes in neutrophil and monocyte/macrophage phenotype in blood and BALF compared to Control rats.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: