Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 109 papers

Waste Biomass-Derived Carbon Anode for Enhanced Lithium Storage.

  • Takashi J Yokokura‎ et al.
  • ACS omega‎
  • 2020‎

Due to increased populations, there is an increased demand for food; thus, battery electrode materials created from waste biomass provide an attractive opportunity. Unfortunately, such batteries rarely sustain capacities comparable to current state-of-the-art technologies. However, an anode synthesized from waste avocado seeds provides high cycling stability over 100 cycles and provides comparable capacity to graphite, around 315 mAh g-1 at 100 mA g-1 current density, and readily outperforms graphene in terms of both stability and capacity. This novel electrode provides such capacities as an amorphous carbon without the use of any additives or doped heteroatoms by utilizing capacitance-driven mechanisms to contribute to 54% of its lithium-ion storage. This allows the waste biomass-derived anode to overcome its low apparent diffusion coefficient of 4.38 × 10-11 cm2 s-1. By creating battery anodes from avocado seeds, waste streams can be redirected into creating valuable, renewable energy storage resources.


Milling Characteristics of Coal and Torrefied Biomass Blends in a Roller Mill.

  • Kiyoshi Sakuragi‎ et al.
  • ACS omega‎
  • 2021‎

CO2 emissions from coal power generation could be reduced by maximizing the amount of torrefied biomass that can be used in pulverized-coal-fired power plants. In this study, to evaluate the milling performance of coal and torrefied wood pellets (TPs), various blend ratios were tested using a bench-scale roller mill. Neutral sugar analysis was performed to evaluate the biomass-derived part of the milled products. Under the test conditions, mill power consumption and differential pressure increased with the TP content. As the TP content increased, the particle size of the milled products also increased. Furthermore, the biomass-derived neutral sugar content and the xylose/glucose (X/G) ratio were higher in the larger particles of the milled product and in the samples collected inside the roller mill than those in the input feedstock. The biomass-derived part with the highest X/G ratio accumulated inside the roller mill, which is probably why the mill power and differential pressure increased with the TP content. The TP, with poor grindability, was discharged from the mill with a larger particle size than that of coal. Although torrefaction treatment pyrolyzed the biomass, the degree of torrefaction can vary within the pellets depending on the torrefaction conditions. To ensure stable operation of the roller mill and an effective reduction in the size of the coal-TP blend, the selection and use of uniformly and sufficiently torrefied wood pellets are important.


Effective Catalytic Delignification and Fractionation of Lignocellulosic Biomass in Water over Zn3V2O8 Mixed Oxide.

  • Khadija Khallouk‎ et al.
  • ACS omega‎
  • 2020‎

The conversion of poplar wood biomass to highly value-added chemicals and molecular building blocks was achieved by using the dispersed mixed oxide Zn3V2O8 (ZVO) in water under 100 kPa of 10% O2/N2 at 160, 180, and 200 °C for 4 h. This nanostructured mixed oxide was prepared via the precipitation process and then characterized by several techniques. The results showed that this mixed oxide has interesting catalytic properties and is a versatile catalyst for biomass delignification and lignin and hemicellulose depolymerization. ZVO exhibited high activity on poplar biomass delignification and fractionation (degree of delignification > 97%) and lignin and holocellulose conversion with high yield into aromatic and furan compounds (80 mg/g initial wood at 200 °C), with high selectivities for 5-hydroxymethylfurfural (HMF) (25 mg/g of initial wood), vanillin, and syringaldehyde.


Porous Graphene-like Carbon from Fast Catalytic Decomposition of Biomass for Energy Storage Applications.

  • Aurora Gomez-Martin‎ et al.
  • ACS omega‎
  • 2019‎

A novel carbon material made of porous graphene-like nanosheets was synthesized from biomass resources by a simple catalytic graphitization process using nickel as a catalyst for applications in electrodes for energy storage devices. A recycled fiberboard precursor was impregnated with saturated nickel nitrate followed by high-temperature pyrolysis. The highly exothermic combustion of in situ formed nitrocellulose produces the expansion of the cellulose fibers and the reorganization of the carbon structure into a three-dimensional (3D) porous assembly of thin carbon nanosheets. After acid washing, nickel particles are fully removed, leaving nanosized holes in the wrinkled graphene-like sheets. These nanoholes confer the resulting carbon material with ≈75% capacitance retention, when applied as a supercapacitor electrode in aqueous media at a specific current of 100 A·g-1 compared to the capacitance reached at 20 mA·g-1, and ≈35% capacity retention, when applied as a negative electrode for lithium-ion battery cells at a specific current of 3720 mA·g-1 compared to the specific capacity at 37.2 mA·g-1. These findings suggest a novel way for synthesizing 3D nanocarbon networks from a cellulosic precursor requiring low temperatures and being amenable to large-scale production while using a sustainable starting precursor such as recycled fiberwood.


Rapid Determination of Acetic Acid, Furfural, and 5-Hydroxymethylfurfural in Biomass Hydrolysates Using Near-Infrared Spectroscopy.

  • Jun Li‎ et al.
  • ACS omega‎
  • 2018‎

Near-infrared spectroscopy (NIRS) is a rapid detection technique that has been used to characterize biomass. The objective of this study was to develop suitable NIRS models to predict the acetic acid, furfural, and 5-hydroxymethylfurfural (HMF) contents in biomass hydrolysates. Using a uniform distribution of pretreatment conditions, 60 representative biomass hydrolysates were prepared. Partial least-squares regression was used to develop models capable of predicting acetic acid, furfural, and HMF contents. Optimal models were built using the wavenumber range of 9000-8000 and 7000-5000 cm-1 with high R 2 for calibration and validation models, small root-mean-square error of calibration (<0.21) and root-mean-square error of prediction (RMSEP, <0.42), and a ratio of the standard deviation of the reference values to the RMSEP of >2.7. The NIRS method largely reduced the analytical time from ∼55 to <1 min and has no cost for reagents.


Technical Evaluation of a Levulinic Acid Plant Based on Biomass Transformation under Techno-Economic and Exergy Analyses.

  • Samir Isaac Meramo Hurtado‎ et al.
  • ACS omega‎
  • 2021‎

Levulinic acid (LA) recently has attracted much attention as a promising biorefinery platform due to its potential to be economical and sustainable. This paper addresses technical, techno-economic, and exergetic analyses of an industrial LA production via acid-catalyzed dehydration. The process was simulated through Aspen Plus, considering a processing capacity of 15,175.60 kg/h of banana empty fruit bunches. The global productivity yield was 25.56%, producing 3883.13 kg/h of LA. The techno-economic analysis evidenced that this process may be an attractive alternative for biomass valorization, considering the obtained financial results. This process's total production cost was 0.178 $USD per kilogram of biomass and a total annualized cost of $USD 29,163,638.95. Exergy analysis revealed that this process had an irreversibility rate of 1.48 × 105 MJ/h. The pretreatment stage presented the lowest exergetic efficiency. Globally, the exergy efficiency was 53.76%, which is within the reported results for analogous biomass transformation processes.


High-Performance Solar Steam Generator Using Low-Cost Biomass Waste Photothermal Material and Engineering of the Structure.

  • Mahmoud Maleki‎ et al.
  • ACS omega‎
  • 2022‎

In this work, high-performance, low-cost, environmentally friendly multilayered solar steam generation systems are fabricated by engineering the structure and using a biomass photothermal material. Remarkably, the biomass photothermal material is extracted from the pyrolysis waste of linseed (flax) grains. The introduced system desalinates water using solar energy as the renewable source of energy, and its light absorber is from the waste of a renewable source. The biomass waste powder possesses a mesoporous structure, providing high light absorption through photon scattering and its high surface area. Moreover, to harvest the incident light efficiently and manage the thermal energy generated, devices including light absorbers with cone and cubic configurations and different water manager layers are fabricated and compared to each other. To confirm the high performance of the introduced photothermal material, different systems comprising graphite, graphene oxide, and carbon nanotube light absorbers are also fabricated. Using a biomass light absorber combined with harvesting of the light in different directions (cone configuration), the system with a water evaporation rate of 1.59 kg/m2h corresponding to an efficiency of 92.9% is achieved. Furthermore, by depositing a thin layer of the transparent thermal superinsulator silica aerogel on the light absorber layer, the generated heat is localized and the heat losses are prevented, leading to a 7.5% enhancement of the water evaporation rate of the biomass system. The eco-friendly biomass-based system shows no significant change in its performance through operation for 40 desalination cycles of Persian Gulf water.


Synthesis and Characterization of ZnO Nanoparticles Derived from Biomass (Sisymbrium Irio) and Assessment of Potential Anticancer Activity.

  • Saima Maher‎ et al.
  • ACS omega‎
  • 2023‎

Cancer treatment development is hampered by chemotherapy side effects, drug resistance, and tumor metastasis, giving cancer patients a gloomy prognosis. Nanoparticles (NPs) have developed as a promising medicinal delivery technique in the last 10 years. The zinc oxide (ZnO) NPs can precisely and captivatingly promote the apoptosis of cancer cells in cancer treatment. There is also an urgent need to discover novel anti-cancer therapies, and current research suggests that ZnO NPs hold significant promise. ZnO NPs have been tested for phytochemical screening and in vitro chemical efficiency. The green synthesis method was employed for the preparation of ZnO NPs from Sisymbrium irio (L.) (Khakshi). An alcoholic and aqueous extract of S. irio was prepared using the Soxhlet method. Various chemical compounds were revealed in the methanolic extract through qualitative analysis. The results of quantitative analysis showed that the total phenolic content has the highest amount (42.7861 mgGAE/g), while the resultant amounts of (5.72175 mgAAE/g) and (15.20725 mgAAE/g) were obtained in total flavonoid content and antioxidant property, respectively. ZnO NPs were prepared using a 1:1 ratio. The synthesized ZnO NPs were identified to have a hexagonal wurtzite crystal arrangement. The nanomaterial was characterized by scanning electron microscopy, transmission electron microscopy, and UV-visible spectroscopy. The ZnO-NPs' morphology exhibited an absorbance at 350-380 nm. Furthermore, different fractions were prepared and assessed for anticancer activity. As a result of this anticancer activity, all fractions exhibited cytotoxic activity against both BHK and HepG2 human cancer cell lines. The methanol fraction showed the highest activity of 90% (IC50 = 0.4769 mg/mL), followed by the hexane fraction that showed 86.72%, ethyl acetate showed 85%, and chloroform fraction showed 84% against BHK and HepG2 cell lines. These findings suggested that synthesized ZnO-NPs have anticancer potential.


Furan-2,5- and Furan-2,3-dicarboxylate Esters Derived from Marine Biomass as Plasticizers for Poly(vinyl chloride).

  • TanPhat Nguyen‎ et al.
  • ACS omega‎
  • 2020‎

Esters of furan dicarboxylic acids (DAFs) were synthesized by a one-pot reaction between marine biomass-derived galactaric acid and bioalcohol under solvent-free conditions and were fully characterized. The catalyst amount could be reduced without loss of reaction yields using p-xylene as the material separation agent. Also, a possible mechanism was proposed for the first time. Then the properties of four DAFs as plasticizers on the poly(vinyl chloride) (PVC) matrix were investigated. The experimental results showed that DAFs exhibit competitive efficiencies of plasticization when compared to the most commercialized plasticizer, DOP. It was found that the combination of DAFs and PVC produced homogeneous smooth-surface films, indicating miscibility between them. ATR-FTIR depicted the upshift of carbonyl absorption bands after mixing with the PVC matrix, with a magnitude of at most 18-21 cm-1. TGA, DSC, and UTM data illustrated equivalent plasticization efficiencies. Due to their small molecular weights, the investigated DAFs are more volatile. However, due to bearing an oxygen atom in the aromatic furan ring, the degree of polarization of DAFs was boosted and helped inhibit leaching into the surrounding media. In brief, these synthetic compounds have promising feasibility as biobased plasticizers. Moreover, another interesting point is that the properties of furan-2,3-dicarboxylic acid derivatives were studied for the first time and herein reported.


Direct Catalytic Route to Biomass-Derived 2,5-Furandicarboxylic Acid and Its Use as Monomer in a Multicomponent Polymerization.

  • Oliver R Schade‎ et al.
  • ACS omega‎
  • 2019‎

Efficient synthesis of valuable platform chemicals from renewable feedstock is a challenging, yet essential strategy for developing technologies that are both economical and sustainable. In the present study, we investigated the synthesis of 2,5-furandicarboxylic acid (FDCA) in a two-step catalytic process starting from sucrose as largely available biomass feedstock. In the first step, 5-(hydroxymethyl)furfural (HMF) was synthesized by hydrolysis and dehydration of sucrose using sulfuric acid in a continuous reactor in 34% yield. In a second step, the resulting reaction solution was directly oxidized to FDCA without further purification over a Au/ZrO2 catalyst with 84% yield (87% selectivity, batch process), corresponding to 29% overall yield with respect to sucrose. This two-step process could afford the production of pure FDCA after the respective extraction/crystallization despite the impure intermediate HMF solution. To demonstrate the direct application of the biomass-derived FDCA as monomer, the isolated product was used for Ugi-multicomponent polymerizations, establishing a new application possibility for FDCA. In the future, this efficient two-step process strategy toward FDCA should be extended to further renewable feedstock.


Comparative Study: Impacts of Ca and Mg Salts on Iron Oxygen Carriers in Chemical Looping Combustion of Biomass.

  • Duygu Yilmaz‎ et al.
  • ACS omega‎
  • 2021‎

Chemical looping combustion (CLC) is one of the most promising methods for carbon capture and storage (CCS). An oxygen carrier, i.e., a mineral that can be oxidized and reduced, is used to convert the fuel in the process. The produced CO2 is inherently separated from the air components that enables easier CCS. The use of biomass-based fuels is desirable since it can lead to negative CO2 emissions. On the other hand, alkali compounds from the biomass may interact with the oxygen carrier causing problems, such as deactivation of the oxygen carrier. The most common oxygen carriers contain iron, since iron-based ores and industrial waste materials are readily available and cost-efficient. Therefore, the interaction between the iron oxygen carriers and the biomass ash-forming compounds needs to be investigated. Since Ca/Mg are abundant in biomass, it is important to clarify how their compounds interact with the oxygen carrier. In this study, the effect of Ca/Mg carbonates, chlorides, nitrates, sulfates, and phosphates along with synthetic biomass-derived ash on iron oxides was investigated. Redox reactions were investigated at 950 °C during 5 h under both oxidizing and reducing atmospheres. The results showed that the effect of Ca/Mg salts on the oxygen carrier varied depending on the anion of the salt. Generally, the nitrate- and phosphate-based salts of both Ca and Mg showed the harshest effect regarding agglomeration of the oxygen carriers. It was shown that the Ca/Mg-based compounds interacted differently with iron oxides, which was an unexpected result.


Tomato's Green Gold: Bioeconomy Potential of Residual Tomato Leaf Biomass as a Novel Source for the Secondary Metabolite Rutin.

  • Laura V Junker-Frohn‎ et al.
  • ACS omega‎
  • 2019‎

At the end of the annual horticultural production cycle of greenhouse-grown crops, large quantities of residual biomass are discarded. Here, we propose a new value chain to utilize horticultural leaf biomass for the extraction of secondary metabolites. To increase the secondary metabolite content of leaves, greenhouse-grown crop plants were exposed to low-cost abiotic stress treatments after the last fruit harvest. As proof of concept, we evaluated the production of the flavonoid rutin in tomato plants subjected to nitrogen deficiency. In an interdisciplinary approach, we observed the steady accumulation of rutin in young plants under nitrogen deficiency, tested the applicability of nitrogen deficiency in a commercial-like greenhouse, developed a high efficiency extraction for rutin, and evaluated the acceptance of the proposed value chain by its key actors economically. On the basis of the positive interdisciplinary evaluation, we identified opportunities and challenges for the successful establishment of horticultural leaf biomass as a novel source for secondary metabolites.


Nanomechanics and Raman Spectroscopy of in Situ Native Carbohydrate Storage Granules for Enhancing Starch Quality and Lignocellulosic Biomass Production.

  • Rubye H Farahi‎ et al.
  • ACS omega‎
  • 2020‎

Alternative energy strategies based on plant biomass-derived bioenergy and biofuels rely on understanding and optimization of plant structure, chemistry, and performance. Starch, a constitutive element of all green plants, is important to food, biofuels, and industrial applications. Models of carbohydrate storage granules are highly heterogeneous in representing morphology and structure, though a deeper understanding of the role of structure in functional behavior is emerging. A better understanding of the in situ nanoscale properties of native granules is needed to help improve the starch quality in food crops as well as optimize lignocellulosic biomass production in perennial nonfood crops. Here, we present a new technique called soft mechanical nano-ablation (sMNA) for accessing the interior of the granules without compromising the inner nanostructure. We then explore the nanomechanics of granules within the ray parenchyma cells of Populus xylem, a desirable woody biofuel feedstock. The employed soft outer layer nanoablation and atomic force microscopy reveal that the inner structure comprises 156 nm blocklets arranged in a semicrystalline organization. The nanomechanical properties of the inner and outer structures of a single starch granule are measured and found to exhibit large variations, changing by a factor of 3 in Young's modulus and a factor of 2 in viscoplastic index. These findings demonstrate how the introduced approach facilitates studies of structure-function relationships among starch granules and more complex secondary cell wall features as they relate to plant performance.


Room-Temperature Asymmetric Transfer Hydrogenation of Biomass-Derived Levulinic Acid to Optically Pure γ-Valerolactone Using a Ruthenium Catalyst.

  • Vaishali S Shende‎ et al.
  • ACS omega‎
  • 2019‎

This study presents a first report on ruthenium-catalyzed asymmetric transfer hydrogenation (ATH) of levulinic acid (LA) to chiral γ-valerolactone (GVL). ATH of LA has been explored with Noyori's chiral catalyst (Ru-TsDPEN) in methanol solvent. Efficacy of ATH reaction of LA was investigated under different reactions conditions such as temperature, catalyst, and hydrogen donor concentration. The effect of various organic tertiary bases along with formic acid (FA) as a hydrogen donor was studied, and N-methylpiperidine with FA (1:1 molar ratio) was revealed as an efficient hydrogen donor for ATH of LA to GVL furnishing chiral GVL with complete conversion and 93% enantiomeric excess (ee). This operationally simple and mild ATH protocol was tested for practical applicability of ATH of LA obtained from biomass waste (rice husk and wheat straw) and furnished chiral GVL with 82% ee.


Subgram-Scale Synthesis of Biomass Waste-Derived Fluorescent Carbon Dots in Subcritical Water for Bioimaging, Sensing, and Solid-State Patterning.

  • Rina Su‎ et al.
  • ACS omega‎
  • 2018‎

Fluorescent carbon dots (FCDs) have received considerable attention because of the great potential for a wide range of applications, from bioimaging to optoelectronic devices. In this work, we reported the synthesis of nitrogen-doped FCDs with an average size of 2 nm in a subcritical water apparatus by using biomass waste (i.e., expired milk) as the precursor. The obtained FCDs were highly dispersed in aqueous solution because of the presence of O-containing functional groups on their surfaces. Under the excitation of ultraviolet and blue light, the FCDs exhibited excitation wavelength-dependent fluorescence in the emission range of 400-550 nm. The FCDs could be easily taken up by HeLa cells without additional surface functionalization, serving as fluorescent nanoprobes for bioimaging. The applications of FCDs as sensing agents for the detection of Fe3+, solid-state fluorescent patterning, and transparent hybrid films were also performed, demonstrating their potential for solid-state fluorescent sensing, security labeling, and wearable optoelectronics.


Preparation of Biomass-Based Carbon Dots with Aggregation Luminescence Enhancement from Hydrogenated Rosin for Biological Imaging and Detection of Fe3.

  • Jundan Zhou‎ et al.
  • ACS omega‎
  • 2020‎

Fluorescent carbon dots (CDs) have numerous important applications, but enhancing the fluorescence emission and overcoming fluorescence quenching are still big challenges. Here, fluorescence-enhanced carbon dots (named hr-CDs) were prepared from sustainable hydrogenated rosin, using a simple hydrothermal method in a water solvent. The hr-CDs were mainly composed of graphitized carbon cores with surface functional groups. With the increase in the concentration to hr-CDs aqueous solutions, the distance between the carbon cores decreased, which resulted in the formation of J aggregates and the enhanced blue fluorescence emission. Even in the solid state, the hr-CDs show fluorescence emission because the surface functional groups could prevent π-π stacking interactions between the carbon cores. The hr-CDs show excellent resistance to photobleaching under intense ultraviolet light (200 mW/cm2). Vibrations and rotations of graphitized carbon core are restricted by low temperature and high viscosity, leading to increased radiative transition and thus increase in fluorescence intensity. The pH value in the range of 3.99-9.87 and anions have little effect on the fluorescence emission of hr-CDs. The fluorescence emission of the hr-CDs was selectively quenched by Fe3+ and can thus be used to detect Fe3+. The hr-CDs also have good biocompatibility and show the same ability in cell nuclear staining as 4',6-diamidino-2-phenylindole (DAPI).


Understanding the Effects of Ethylene Glycol-Assisted Biomass Fractionation Parameters on Lignin Characteristics Using a Full Factorial Design and Computational Modeling.

  • Osbert Yu‎ et al.
  • ACS omega‎
  • 2019‎

Contributing to recent lignin valorization efforts, this study uses an integrative approach to explore the effects of fractionation parameters on lignin characteristics. The following reaction parameters are explored: water content of the water-organic solvent mixture, reaction temperature, and sulfuric acid content. Ethylene glycol (EG) was selected as the fractionation solvent because of its promising lignin solubility and extractability. This study takes a novel approach in conducting EG-assisted biomass fractionation; instead of removing lignin from the biomass, lignin was extracted and characterized. Lignin characteristics involving recovery and linkages were analyzed. A maximum of 27 wt % lignin recovery was achieved at a low water content (25%) and high reaction temperature (180 °C) in the presence of sulfuric acid (1 wt %). From NMR analysis, aryl-ether linkages, which are important to preserve for lignin valorization, were decomposed as a result of relatively high temperature and the presence of sulfuric acid. Statistical analysis showed that all individual parameters and their interactions had significant effects on lignin recovery. Computational analysis revealed that hydrogen bonding between the EG and lignin macromolecules greatly decreased with an increasing amount of water.


Simple and Competitive Adsorption Study of Nickel(II) and Chromium(III) on the Surface of the Brown Algae Durvillaea antarctica Biomass.

  • Jhonatan R Guarín-Romero‎ et al.
  • ACS omega‎
  • 2019‎

In this work Ni(II) and Cr(III) adsorption on Durvillaea antarctica surface were studied, optimal condition of pH, adsorption time is achieved at pH 5.0, with contact times of 240 and 420 minutes for a maximum adsorption capacity of 32.85 and 102.72 mg g-1 for Ni(II) and Cr(III), respectively. The changes in the vibration intensity of the functional groups detected in the starting material by Fourier transform infrared spectroscopy and the opening of the cavities after the biosorption process detected by scanning electron microscopy images suggested the interaction of the metal ions with the surface and the changes in the chemical behavior of the solid. The heavy metal adsorption equilibrium data fitted well to the Sips model. The effect of competitive ions on adsorption equilibrium was also evaluated, and the results showed that the two metals compete for the same active sites of the biosorbent; the increase of the Ni(II) initial concentration increases its adsorption capacity but decreases the adsorption capacity of Cr(III).


Biomass-Derived Sulfur, Nitrogen Co-Doped Carbon Dots for Colorimetric and Fluorescent Dual Mode Detection of Silver (I) and Cell Imaging.

  • Hongzhi Lu‎ et al.
  • ACS omega‎
  • 2019‎

A method for green synthesis of sulfur, nitrogen co-doped photoluminescence carbon dots (S,N/CDs) originating from two natural biomass was proposed. By simple hydrothermal heating of bean pod and onion, blue emission CDs were prepared. Ag+ can effectively quench the as-prepared S,N/CDs. Under optimized conditions, the linear range of the established method for Ag+ detection was 0.1-25 μM, and the detection of limit based on 3S/N was 37 nM. More interestingly, the addition of Ag+ can induce an evident color change of S,N/CDs from yellow to brown under sunlight. The developed method was applied for detection of Ag+ in river water and tap water samples. Satisfied recoveries ranging from 96.0 to 102.0% with precision below 4.1% were obtained. S,N/CDs showed low toxicity toward 4T1 cells, which also can be extended to cellular imaging and intracellular Ag+ detection. The simple and green approach proposed here could meet the requirements for bioimaging and environmental monitoring.


A Workup Protocol Combined with Direct Application of Quantitative Nuclear Magnetic Resonance Spectroscopy of Aqueous Samples from Large-Scale Steam Explosion of Biomass.

  • Camilla Løhre‎ et al.
  • ACS omega‎
  • 2021‎

Methods for thermochemical conversion of biomass into renewable energy and materials rapidly increase in range and outreach. A focus on the target product streams for valorization is natural, yet several pretreatment steps and conversion methods also result in an aqueous byproduct, which has been given less attention. This paper aims to fill this knowledge gap in the existing literature on identification and quantification of organic components in such aqueous phases by reporting a fast and direct workup protocol combined with application of quantitative analytical nuclear magnetic resonance (NMR) spectroscopy. Laboratory workup procedures combined with subsequent proton NMR spectroscopy with water signal suppression using presaturation pulses during relaxation delay, noesygppr1d, have been established, evaluated, and approved by testing on three different Bruker BioSpin NMR spectrometers; an 850 MHz AVANCE III HD with a 5 mm TCI CryoProbe, a 600 MHz AVANCE NEO with a QCI CryoProbe, and a 500 MHz AVANCE with a 5 mm BBO room-temperature probe additionally confirmed the quantification method to be applicable. The analytical procedure identified furfural, methanol, acetic acid, and formic acid as the dominating compounds in the analyzed aqueous samples, which were process effluents generated by the patented Arbacore pellet production process using steam explosion of wood shavings. A selected range of quantitative results in the aqueous phase from large-scale steam explosion is included in the study. The described procedure provides excellent quantitative reproducibility with experimental series standard deviations of <1% (mM), is nondestructive, and can be automated on demand.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: