2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 61 papers

Visual Comparative Omics of Fungi for Plant Biomass Deconstruction.

  • Shingo Miyauchi‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Wood-decay fungi contain the cellular mechanisms to decompose such plant cell wall components as cellulose, hemicellulose, and lignin. A multi-omics approach to the comparative analysis of wood-decay fungi gives not only new insights into their strategies for decomposing recalcitrant plant biomass, but also an understanding of how to exploit these mechanisms for biotechnological applications. We have developed an analytical workflow, Applied Biomass Conversion Design for Efficient Fungal Green Technology (ABCDEFGT), to simplify the analysis and interpretation of transcriptomic and secretomic data. ABCDEFGT utilizes self-organizing maps for grouping genes with similar transcription patterns, and an overlay with secreted proteins. The key feature of ABCDEFGT is simple graphic outputs of genome-wide transcriptomic and secretomic topographies, which enables visual inspection without a priori of the omics data and facilitates discoveries of co-regulated genes and proteins. Genome-wide omics landscapes were built with the newly sequenced fungal species Pycnoporus coccineus, Pycnoporus sanguineus, and Pycnoporus cinnabarinus grown on various carbon sources. Integration of the post-genomic data revealed a global overlap, confirming the pertinence of the genome-wide approach. ABCDEFGT was evaluated by comparison with the latest clustering method for ease of output interpretation, and ABCDEFGT gave a better biological representation of fungal behaviors. The genome-wide multi-omics strategy allowed us to determine the potential synergy of particular enzymes decomposing cellulose, hemicellulose, and lignin such as Lytic Polysaccharide Monooxygenases, modular enzymes associated with a cellulose binding module1, and Class II Peroxidase isoforms co-regulated with oxido-reductases. Overall, ABCDEFGT was capable of visualizing genome-wide transcriptional and secretomic profiles for intuitive interpretations and is suitable for exploration of newly-sequenced organisms.


Diploid genomic architecture of Nitzschia inconspicua, an elite biomass production diatom.

  • Aaron Oliver‎ et al.
  • Scientific reports‎
  • 2021‎

A near-complete diploid nuclear genome and accompanying circular mitochondrial and chloroplast genomes have been assembled from the elite commercial diatom species Nitzschia inconspicua. The 50 Mbp haploid size of the nuclear genome is nearly double that of model diatom Phaeodactylum tricornutum, but 30% smaller than closer relative Fragilariopsis cylindrus. Diploid assembly, which was facilitated by low levels of allelic heterozygosity (2.7%), included 14 candidate chromosome pairs composed of long, syntenic contigs, covering 93% of the total assembly. Telomeric ends were capped with an unusual 12-mer, G-rich, degenerate repeat sequence. Predicted proteins were highly enriched in strain-specific marker domains associated with cell-surface adhesion, biofilm formation, and raphe system gliding motility. Expanded species-specific families of carbonic anhydrases suggest potential enhancement of carbon concentration efficiency, and duplicated glycolysis and fatty acid synthesis pathways across cytosolic and organellar compartments may enhance peak metabolic output, contributing to competitive success over other organisms in mixed cultures. The N. inconspicua genome delivers a robust new reference for future functional and transcriptomic studies to illuminate the physiology of benthic pennate diatoms and harness their unique adaptations to support commercial algae biomass and bioproduct production.


Closely related fungi employ diverse enzymatic strategies to degrade plant biomass.

  • Isabelle Benoit‎ et al.
  • Biotechnology for biofuels‎
  • 2015‎

Plant biomass is the major substrate for the production of biofuels and biochemicals, as well as food, textiles and other products. It is also the major carbon source for many fungi and enzymes of these fungi are essential for the depolymerization of plant polysaccharides in industrial processes. This is a highly complex process that involves a large number of extracellular enzymes as well as non-hydrolytic proteins, whose production in fungi is controlled by a set of transcriptional regulators. Aspergillus species form one of the best studied fungal genera in this field, and several species are used for the production of commercial enzyme cocktails.


Tracking of enzymatic biomass deconstruction by fungal secretomes highlights markers of lignocellulose recalcitrance.

  • Gabriel Paës‎ et al.
  • Biotechnology for biofuels‎
  • 2019‎

Lignocellulose biomass is known as a recalcitrant material towards enzymatic hydrolysis, increasing the process cost in biorefinery. In nature, filamentous fungi naturally degrade lignocellulose, using an arsenal of hydrolytic and oxidative enzymes. Assessment of enzyme hydrolysis efficiency generally relies on the yield of glucose for a given biomass. To better understand the markers governing recalcitrance to enzymatic degradation, there is a need to enlarge the set of parameters followed during deconstruction.


Comparative Genomics and Transcriptomics Analyses Reveal Divergent Plant Biomass-Degrading Strategies in Fungi.

  • Jiajia Li‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2023‎

Plant biomass is one of the most abundant renewable carbon sources, which holds great potential for replacing current fossil-based production of fuels and chemicals. In nature, fungi can efficiently degrade plant polysaccharides by secreting a broad range of carbohydrate-active enzymes (CAZymes), such as cellulases, hemicellulases, and pectinases. Due to the crucial role of plant biomass-degrading (PBD) CAZymes in fungal growth and related biotechnology applications, investigation of their genomic diversity and transcriptional dynamics has attracted increasing attention. In this project, we systematically compared the genome content of PBD CAZymes in six taxonomically distant species, Aspergillus niger, Aspergillus nidulans, Penicillium subrubescens, Trichoderma reesei, Phanerochaete chrysosporium, and Dichomitus squalens, as well as their transcriptome profiles during growth on nine monosaccharides. Considerable genomic variation and remarkable transcriptomic diversity of CAZymes were identified, implying the preferred carbon source of these fungi and their different methods of transcription regulation. In addition, the specific carbon utilization ability inferred from genomics and transcriptomics was compared with fungal growth profiles on corresponding sugars, to improve our understanding of the conversion process. This study enhances our understanding of genomic and transcriptomic diversity of fungal plant polysaccharide-degrading enzymes and provides new insights into designing enzyme mixtures and metabolic engineering of fungi for related industrial applications.


An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion.

  • Federico Sabbadin‎ et al.
  • Nature communications‎
  • 2018‎

Thermobia domestica belongs to an ancient group of insects and has a remarkable ability to digest crystalline cellulose without microbial assistance. By investigating the digestive proteome of Thermobia, we have identified over 20 members of an uncharacterized family of lytic polysaccharide monooxygenases (LPMOs). We show that this LPMO family spans across several clades of the Tree of Life, is of ancient origin, and was recruited by early arthropods with possible roles in remodeling endogenous chitin scaffolds during development and metamorphosis. Based on our in-depth characterization of Thermobia's LPMOs, we propose that diversification of these enzymes toward cellulose digestion might have endowed ancestral insects with an effective biochemical apparatus for biomass degradation, allowing the early colonization of land during the Paleozoic Era. The vital role of LPMOs in modern agricultural pests and disease vectors offers new opportunities to help tackle global challenges in food security and the control of infectious diseases.


Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725.

  • Phuongan Dam‎ et al.
  • Nucleic acids research‎
  • 2011‎

Caldicellulosiruptor bescii DSM 6725 utilizes various polysaccharides and grows efficiently on untreated high-lignin grasses and hardwood at an optimum temperature of ∼ 80 °C. It is a promising anaerobic bacterium for studying high-temperature biomass conversion. Its genome contains 2666 protein-coding sequences organized into 1209 operons. Expression of 2196 genes (83%) was confirmed experimentally. At least 322 genes appear to have been obtained by lateral gene transfer (LGT). Putative functions were assigned to 364 conserved/hypothetical protein (C/HP) genes. The genome contains 171 and 88 genes related to carbohydrate transport and utilization, respectively. Growth on cellulose led to the up-regulation of 32 carbohydrate-active (CAZy), 61 sugar transport, 25 transcription factor and 234 C/HP genes. Some C/HPs were overproduced on cellulose or xylan, suggesting their involvement in polysaccharide conversion. A unique feature of the genome is enrichment with genes encoding multi-modular, multi-functional CAZy proteins organized into one large cluster, the products of which are proposed to act synergistically on different components of plant cell walls and to aid the ability of C. bescii to convert plant biomass. The high duplication of CAZy domains coupled with the ability to acquire foreign genes by LGT may have allowed the bacterium to rapidly adapt to changing plant biomass-rich environments.


A catalog of microbial genes from the bovine rumen unveils a specialized and diverse biomass-degrading environment.

  • Junhua Li‎ et al.
  • GigaScience‎
  • 2020‎

The rumen microbiota provides essential services to its host and, through its role in ruminant production, contributes to human nutrition and food security. A thorough knowledge of the genetic potential of rumen microbes will provide opportunities for improving the sustainability of ruminant production systems. The availability of gene reference catalogs from gut microbiomes has advanced the understanding of the role of the microbiota in health and disease in humans and other mammals. In this work, we established a catalog of reference prokaryote genes from the bovine rumen.


Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis.

  • Marie Couturier‎ et al.
  • BMC genomics‎
  • 2012‎

Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemi)cellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation.


Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalis involves successive secretion of oxidative and hydrolytic enzymes.

  • David Navarro‎ et al.
  • Biotechnology for biofuels‎
  • 2014‎

Enzymatic breakdown of lignocellulosic biomass is a known bottleneck for the production of high-value molecules and biofuels from renewable sources. Filamentous fungi are the predominant natural source of enzymes acting on lignocellulose. We describe the extraordinary cellulose-deconstructing capacity of the basidiomycete Laetisaria arvalis, a soil-inhabiting fungus.


The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown.

  • Anthony Levasseur‎ et al.
  • BMC genomics‎
  • 2014‎

Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology.


Integrative visual omics of the white-rot fungus Polyporus brumalis exposes the biotechnological potential of its oxidative enzymes for delignifying raw plant biomass.

  • Shingo Miyauchi‎ et al.
  • Biotechnology for biofuels‎
  • 2018‎

Plant biomass conversion for green chemistry and bio-energy is a current challenge for a modern sustainable bioeconomy. The complex polyaromatic lignin polymers in raw biomass feedstocks (i.e., agriculture and forestry by-products) are major obstacles for biomass conversions. White-rot fungi are wood decayers able to degrade all polymers from lignocellulosic biomass including cellulose, hemicelluloses, and lignin. The white-rot fungus Polyporus brumalis efficiently breaks down lignin and is regarded as having a high potential for the initial treatment of plant biomass in its conversion to bio-energy. Here, we describe the extraordinary ability of P. brumalis for lignin degradation using its enzymatic arsenal to break down wheat straw, a lignocellulosic substrate that is considered as a biomass feedstock worldwide.


Genomic characterization of three marine fungi, including Emericellopsis atlantica sp. nov. with signatures of a generalist lifestyle and marine biomass degradation.

  • Ole Christian Hagestad‎ et al.
  • IMA fungus‎
  • 2021‎

Marine fungi remain poorly covered in global genome sequencing campaigns; the 1000 fungal genomes (1KFG) project attempts to shed light on the diversity, ecology and potential industrial use of overlooked and poorly resolved fungal taxa. This study characterizes the genomes of three marine fungi: Emericellopsis sp. TS7, wood-associated Amylocarpus encephaloides and algae-associated Calycina marina. These species were genome sequenced to study their genomic features, biosynthetic potential and phylogenetic placement using multilocus data. Amylocarpus encephaloides and C. marina were placed in the Helotiaceae and Pezizellaceae (Helotiales), respectively, based on a 15-gene phylogenetic analysis. These two genomes had fewer biosynthetic gene clusters (BGCs) and carbohydrate active enzymes (CAZymes) than Emericellopsis sp. TS7 isolate. Emericellopsis sp. TS7 (Hypocreales, Ascomycota) was isolated from the sponge Stelletta normani. A six-gene phylogenetic analysis placed the isolate in the marine Emericellopsis clade and morphological examination confirmed that the isolate represents a new species, which is described here as E. atlantica. Analysis of its CAZyme repertoire and a culturing experiment on three marine and one terrestrial substrates indicated that E. atlantica is a psychrotrophic generalist fungus that is able to degrade several types of marine biomass. FungiSMASH analysis revealed the presence of 35 BGCs including, eight non-ribosomal peptide synthases (NRPSs), six NRPS-like, six polyketide synthases, nine terpenes and six hybrid, mixed or other clusters. Of these BGCs, only five were homologous with characterized BGCs. The presence of unknown BGCs sets and large CAZyme repertoire set stage for further investigations of E. atlantica. The Pezizellaceae genome and the genome of the monotypic Amylocarpus genus represent the first published genomes of filamentous fungi that are restricted in their occurrence to the marine habitat and form thus a valuable resource for the community that can be used in studying ecological adaptions of fungi using comparative genomics.


Deletion of either the regulatory gene ara1 or metabolic gene xki1 in Trichoderma reesei leads to increased CAZyme gene expression on crude plant biomass.

  • Tiziano Benocci‎ et al.
  • Biotechnology for biofuels‎
  • 2019‎

Trichoderma reesei is one of the major producers of enzymes for the conversion of plant biomass to sustainable fuels and chemicals. Crude plant biomass can induce the production of CAZymes in T. reesei, but there is limited understanding of how the transcriptional response to crude plant biomass is regulated. In addition, it is unknown whether induction on untreated recalcitrant crude plant biomass (with a large diversity of inducers) can be sustained for longer. We investigated the transcriptomic response of T. reesei to the two industrial feedstocks, corn stover (CS) and soybean hulls (SBH), over time (4 h, 24 h and 48 h), and its regulatory basis using transcription factor deletion mutants (Δxyr1 and Δara1). We also investigated whether deletion of a xylulokinase gene (Δxki1) from the pentose catabolic pathway that converts potential inducers could lead to increased CAZyme gene expression.


Acquisition of host-derived carbon in biomass of the ectomycorrhizal fungus Pisolithus microcarpus is correlated to fungal carbon demand and plant defences.

  • Emiko K Stuart‎ et al.
  • FEMS microbiology ecology‎
  • 2023‎

Ectomycorrhizal (ECM) fungi are key players in forest carbon (C) sequestration, receiving a substantial proportion of photosynthetic C from their forest tree hosts in exchange for plant growth-limiting soil nutrients. However, it remains unknown whether the fungus or plant controls the quantum of C in this exchange, nor what mechanisms are involved. Here, we aimed to identify physiological and genetic properties of both partners that influence ECM C transfer. Using a microcosm system, stable isotope tracing, and transcriptomics, we quantified plant-to-fungus C transfer between the host plant Eucalyptus grandis and nine isolates of the ECM fungus Pisolithus microcarpus that range in their mycorrhization potential and investigated fungal growth characteristics and plant and fungal genes that correlated with C acquisition. We found that C acquisition by P. microcarpus correlated positively with both fungal biomass production and the expression of a subset of fungal C metabolism genes. In the plant, C transfer was not positively correlated to the number of colonized root tips, but rather to the expression of defence- and stress-related genes. These findings suggest that C acquisition by ECM fungi involves individual fungal demand for C and defence responses of the host against C drain.


Draft Genome Assemblies of Five Robust Yarrowia lipolytica Strains Exhibiting High Lipid Production, Pentose Sugar Utilization, and Sugar Alcohol Secretion from Undetoxified Lignocellulosic Biomass Hydrolysates.

  • Caleb Walker‎ et al.
  • Microbiology resource announcements‎
  • 2018‎

Screening the genetic diversity of 45 Yarrowia lipolytica strains identified five candidates with unique metabolic capability and robustness in undetoxified switchgrass hydrolysates, including superior lipid production and efficient pentose sugar utilization. Here, we report the genome sequences of these strains to study their robustness and potential to produce fuels and chemicals.


The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus.

  • Vincent W Wu‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.


AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes.

  • Camille Filiatrault-Chastel‎ et al.
  • Biotechnology for biofuels‎
  • 2019‎

Lignocellulosic biomass is considered as a promising alternative to fossil resources for the production of fuels, materials and chemicals. Efficient enzymatic systems are needed to degrade the plant cell wall and overcome its recalcitrance. A widely used producer of cellulolytic cocktails is the ascomycete Trichoderma reesei, but this organism secretes a limited set of enzymes. To improve the saccharification yields, one strategy is to upgrade the T. reesei enzyme cocktail with enzymes produced by other biomass-degrading filamentous fungi isolated from biodiversity.


Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize.

  • Hitoshi Suzuki‎ et al.
  • BMC genomics‎
  • 2012‎

Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome.


Characterization of three bacterial glycoside hydrolase family 9 endoglucanases with different modular architectures isolated from a compost metagenome.

  • Laure Aymé‎ et al.
  • Biochimica et biophysica acta. General subjects‎
  • 2021‎

Environmental bacteria express a wide diversity of glycoside hydrolases (GH). Screening and characterization of GH from metagenomic sources provides an insight into biomass degradation strategies of non-cultivated prokaryotes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: