Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Structural basis for assembly of TRAPPII complex and specific activation of GTPase Ypt31/32.

  • Chenchen Mi‎ et al.
  • Science advances‎
  • 2022‎

Transport protein particle (TRAPP) complexes belong to the multiprotein tethering complex and exist in three forms-core TRAPP/TRAPPI, TRAPPII, and TRAPPIII. TRAPPII activates GTPase Ypt31/Ypt32 as the guanine nucleotide exchange factor in the trans-Golgi network to determine the maturation of Golgi cisternae into post-Golgi carriers in yeast. Here, we present cryo-EM structures of yeast TRAPPII in apo and Ypt32-bound states. All the structures show a dimeric architecture assembled by two triangle-shaped monomers, while the monomer in the apo state exhibits both open and closed conformations, and the monomer in the Ypt32-bound form only captures the closed conformation. Located in the interior of the monomer, Ypt32 binds with both core TRAPP/TRAPPI and Trs120 via its nucleotide-binding domain and binds with Trs31 via its hypervariable domain. Combined with functional analysis, the structures provide insights into the assembly of TRAPPII and the mechanism of the specific activation of Ypt31/Ypt32 by TRAPPII.


Mechanistic insights into the SNARE complex disassembly.

  • Xuan Huang‎ et al.
  • Science advances‎
  • 2019‎

NSF (N-ethylmaleimide-sensitive factor) and α-SNAP (α-soluble NSF attachment protein) bind to the SNARE (soluble NSF attachment protein receptor) complex, the minimum machinery to mediate membrane fusion, to form a 20S complex, which disassembles the SNARE complex for reuse. We report the cryo-EM structures of the α-SNAP-SNARE subcomplex and the NSF-D1D2 domain in the 20S complex at 3.9- and 3.7-Å resolutions, respectively. Combined with the biochemical and electrophysiological analyses, we find that α-SNAPs use R116 through electrostatic interactions and L197 through hydrophobic interactions to apply force mainly on two positions of the VAMP protein to execute disassembly process. Furthermore, we define the interaction between the amino terminus of the SNARE helical bundle and the pore loop of the NSF-D1 domain and demonstrate its essential role as a potential anchor for SNARE complex disassembly. Our studies provide a rotation model of α-SNAP-mediated disassembly of the SNARE complex.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: