2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 76 papers

Body mass index is associated with biological CSF markers of core brain pathology of Alzheimer's disease.

  • Michael Ewers‎ et al.
  • Neurobiology of aging‎
  • 2012‎

Weight changes are common in aging and Alzheimer's disease (AD) and postmortem findings suggest a relation between lower body mass index (BMI) and increased AD brain pathology. In the current multicenter study, we tested whether lower BMI is associated with higher core AD brain pathology as assessed by cerebrospinal fluid (CSF)-based biological markers of AD in 751 living subjects: 308 patients with AD, 296 subjects with amnestic mild cognitive impairment (MCI), and 147 elderly healthy controls (HC). Based upon a priori cutoff values on CSF concentration of total tau and beta-amyloid (Aβ(1-42)), subjects were binarized into a group with abnormal CSF biomarker signature (CSF+) and those without (CSF-). Results showed that BMI was significantly lower in the CSF+ when compared with the CSF- group (F = 27.7, df = 746, p < 0.001). There was no interaction between CSF signature and diagnosis or apolipoprotein E (ApoE) genotype. In conclusion, lower BMI is indicative of AD pathology as assessed with CSF-based biomarkers in demented and nondemented elderly subjects.


Blood metabolite markers of neocortical amyloid-β burden: discovery and enrichment using candidate proteins.

  • N Voyle‎ et al.
  • Translational psychiatry‎
  • 2016‎

We believe this is the first study to investigate associations between blood metabolites and neocortical amyloid burden (NAB) in the search for a blood-based biomarker for Alzheimer's disease (AD). Further, we present the first multi-modal analysis of blood markers in this field. We used blood plasma samples from 91 subjects enrolled in the University of California, San Francisco Alzheimer's Disease Research Centre. Non-targeted metabolomic analysis was used to look for associations with NAB using both single and multiple metabolic feature models. Five metabolic features identified subjects with high NAB, with 72% accuracy. We were able to putatively identify four metabolites from this panel and improve the model further by adding fibrinogen gamma chain protein measures (accuracy=79%). One of the five metabolic features was studied in the Alzheimer's Disease Neuroimaging Initiative cohort, but results were inconclusive. If replicated in larger, independent studies, these metabolic features and proteins could form the basis of a blood test with potential for enrichment of amyloid pathology in anti-amyloid trials.


Objective subtle cognitive decline and plasma phosphorylated tau181: Early markers of Alzheimer's disease-related declines.

  • Kelsey R Thomas‎ et al.
  • Alzheimer's & dementia (Amsterdam, Netherlands)‎
  • 2021‎

Objectively-defined subtle cognitive decline (Obj-SCD) and plasma phosphorylated-tau181 (p-tau181) are promising early Alzheimer's disease (AD) markers. However, associations between Obj-SCD and p-tau181, and their combined prognostic potential, are unknown.


Anosognosia predicts default mode network hypometabolism and clinical progression to dementia.

  • Joseph Therriault‎ et al.
  • Neurology‎
  • 2018‎

To identify the pathophysiologic mechanisms and clinical significance of anosognosia for cognitive decline in mild cognitive impairment.


Performing Sparse Regularization and Dimension Reduction Simultaneously in Multimodal Data Fusion.

  • Zhengshi Yang‎ et al.
  • Frontiers in neuroscience‎
  • 2019‎

Collecting multiple modalities of neuroimaging data on the same subject is increasingly becoming the norm in clinical practice and research. Fusing multiple modalities to find related patterns is a challenge in neuroimaging analysis. Canonical correlation analysis (CCA) is commonly used as a symmetric data fusion technique to find related patterns among multiple modalities. In CCA-based data fusion, principal component analysis (PCA) is frequently applied as a preprocessing step to reduce data dimension followed by CCA on dimension-reduced data. PCA, however, does not differentiate between informative voxels from non-informative voxels in the dimension reduction step. Sparse PCA (sPCA) extends traditional PCA by adding sparse regularization that assigns zero weights to non-informative voxels. In this study, sPCA is incorporated into CCA-based fusion analysis and applied on neuroimaging data. A cross-validation method is developed and validated to optimize the parameters in sPCA. Different simulations are carried out to evaluate the improvement by introducing sparsity constraint to PCA. Four fusion methods including sPCA+CCA, PCA+CCA, parallel ICA and sparse CCA were applied on structural and functional magnetic resonance imaging data of mild cognitive impairment subjects and normal controls. Our results indicate that sPCA significantly can reduce the impact of non-informative voxels and lead to improved statistical power in uncovering disease-related patterns by a fusion analysis.


inMTSCCA: An Integrated Multi-task Sparse Canonical Correlation Analysis for Multi-omic Brain Imaging Genetics.

  • Lei Du‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2023‎

Identifying genetic risk factors for Alzheimer's disease (AD) is an important research topic. To date, different endophenotypes, such as imaging-derived endophenotypes and proteomic expression-derived endophenotypes, have shown the great value in uncovering risk genes compared to case-control studies. Biologically, a co-varying pattern of different omics-derived endophenotypes could result from the shared genetic basis. However, existing methods mainly focus on the effect of endophenotypes alone; the effect of cross-endophenotype (CEP) associations remains largely unexploited. In this study, we used both endophenotypes and their CEP associations of multi-omic data to identify genetic risk factors, and proposed two integrated multi-task sparse canonical correlation analysis (inMTSCCA) methods, i.e., pairwise endophenotype correlation-guided MTSCCA (pcMTSCCA) and high-order endophenotype correlation-guided MTSCCA (hocMTSCCA). pcMTSCCA employed pairwise correlations between magnetic resonance imaging (MRI)-derived, plasma-derived, and cerebrospinal fluid (CSF)-derived endophenotypes as an additional penalty. hocMTSCCA used high-order correlations among these multi-omic data for regularization. To figure out genetic risk factors at individual and group levels, as well as altered endophenotypic markers, we introduced sparsity-inducing penalties for both models. We compared pcMTSCCA and hocMTSCCA with three related methods on both simulation and real (consisting of neuroimaging data, proteomic analytes, and genetic data) datasets. The results showed that our methods obtained better or comparable canonical correlation coefficients (CCCs) and better feature subsets than benchmarks. Most importantly, the identified genetic loci and heterogeneous endophenotypic markers showed high relevance. Therefore, jointly using multi-omic endophenotypes and their CEP associations is promising to reveal genetic risk factors. The source code and manual of inMTSCCA are available at https://ngdc.cncb.ac.cn/biocode/tools/BT007330.


The membrane-spanning 4-domains, subfamily A (MS4A) gene cluster contains a common variant associated with Alzheimer's disease.

  • Carmen Antúnez‎ et al.
  • Genome medicine‎
  • 2011‎

In order to identify novel loci associated with Alzheimer's disease (AD), we conducted a genome-wide association study (GWAS) in the Spanish population.


Cognitive deficits in non-demented diabetic elderly appear independent of brain amyloidosis.

  • Gloria C Chiang‎ et al.
  • Journal of the neurological sciences‎
  • 2017‎

To determine the effects of Type 2 diabetes (DM2) on levels of brain amyloidosis and cognition in a community-dwelling cohort of nondemented elderly individuals.


Dynamic association between AT(N) profile and cognition mediated by cortical thickness in Alzheimer's continuum.

  • Jae-Won Jang‎ et al.
  • NeuroImage. Clinical‎
  • 2020‎

The recently-proposed National Institute on Aging and Alzheimer's Association research framework organizes Alzheimer's disease (AD) biomarkers based on amyloid/tau/neurodegeneration (AT(N)). This study investigated the mediating effect of structural change in brain MRI on changes in cognitive function according to initial AT(N) profiles.


The frequency and influence of dementia risk factors in prodromal Alzheimer's disease.

  • Isabelle Bos‎ et al.
  • Neurobiology of aging‎
  • 2017‎

We investigated whether dementia risk factors were associated with prodromal Alzheimer's disease (AD) according to the International Working Group-2 and National Institute of Aging-Alzheimer's Association criteria, and with cognitive decline. A total of 1394 subjects with mild cognitive impairment from 14 different studies were classified according to these research criteria, based on cognitive performance and biomarkers. We compared the frequency of 10 risk factors between the subgroups, and used Cox-regression to examine the effect of risk factors on cognitive decline. Depression, obesity, and hypercholesterolemia occurred more often in individuals with low-AD-likelihood, compared with those with a high-AD-likelihood. Only alcohol use increased the risk of cognitive decline, regardless of AD pathology. These results suggest that traditional risk factors for AD are not associated with prodromal AD or with progression to dementia, among subjects with mild cognitive impairment. Future studies should validate these findings and determine whether risk factors might be of influence at an earlier stage (i.e., preclinical) of AD.


Visualizing Alzheimer's disease progression in low dimensional manifolds.

  • Kangwon Seo‎ et al.
  • Heliyon‎
  • 2019‎

While tomographic neuroimaging data is information rich, objective, and with high sensitivity in the study of brain diseases such as Alzheimer's disease (AD), its direct use in clinical practice and in regulated clinical trial (CT) still has many challenges. Taking CT as an example, unless the relevant policy and the perception of the primary outcome measures change, the need to construct univariate indices (out of the 3-D imaging data) to serve as CT's primary outcome measures will remain the focus of active research. More relevant to this current study, an overall global index that summarizes multiple complicated features from neuroimages should be developed in order to provide high diagnostic accuracy and sensitivity in tracking AD progression over time in clinical setting. Such index should also be practically intuitive and logically explainable to patients and their families. In this research, we propose a new visualization tool, derived from the manifold-based nonlinear dimension reduction of brain MRI features, to track AD progression over time. In specific, we investigate the locally linear embedding (LLE) method using a dataset from Alzheimer's Disease Neuroimaging Initiative (ADNI), which includes the longitudinal MRIs from 562 subjects. About 20% of them progressed to the next stage of dementia. Using only the baseline data of cognitively unimpaired (CU) and AD subjects, LLE reduces the feature dimension to two and a subject's AD progression path can be plotted in this low dimensional LLE feature space. In addition, the likelihood of being categorized to AD is indicated by color. This LLE map is a new data visualization tool that can assist in tracking AD progression over time.


Brain structure and allelic associations in Alzheimer's disease.

  • Seok Woo Moon‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2023‎

Alzheimer's disease (AD), the most prevalent form of dementia, affects 6.5 million Americans and over 50 million people globally. Clinical, genetic, and phenotypic studies of dementia provide some insights of the observed progressive neurodegenerative processes, however, the mechanisms underlying AD onset remain enigmatic.


Alzheimer's disease progression model based on integrated biomarkers and clinical measures.

  • Yue Qiu‎ et al.
  • Acta pharmacologica Sinica‎
  • 2014‎

Biomarkers and image markers of Alzheimer's disease (AD), such as cerebrospinal fluid Aβ42 and p-tau, are effective predictors of cognitive decline or dementia. The aim of this study was to integrate these markers with a disease progression model and to identify their abnormal ranges.


Spatial correlations exploitation based on nonlocal voxel-wise GWAS for biomarker detection of AD.

  • Meiyan Huang‎ et al.
  • NeuroImage. Clinical‎
  • 2019‎

Potential biomarker detection is a crucial area of study for the prediction, diagnosis, and monitoring of Alzheimer's disease (AD). The voxelwise genome-wide association study (vGWAS) is widely used in imaging genomics studies that is usually applied to the detection of AD biomarkers in both imaging and genetic data. However, performing vGWAS remains a challenge because of the computational complexity of the technique and our ignorance of the spatial correlations within the imaging data. In this paper, we propose a novel method based on the exploitation of spatial correlations that may help to detect potential AD biomarkers using a fast vGWAS. To incorporate spatial correlations, we applied a nonlocal method that supposed that a given voxel could be represented by weighting the sum of the other voxels. Three commonly used weighting methods were adopted to calculate the weights among different voxels in this study. Then, a fast vGWAS approach was used to assess the association between the image and the genetic data. The proposed method was estimated using both simulated and real data. In the simulation studies, we designed a set of experiments to evaluate the effectiveness of the nonlocal method for incorporating spatial correlations in vGWAS. The experiments showed that incorporating spatial correlations by the nonlocal method could improve the detecting accuracy of AD biomarkers. For real data, we successfully identified three genes, namely, ANK3, MEIS2, and TLR4, which have significant associations with mental retardation, learning disabilities and age according to previous research. These genes have profound impacts on AD or other neurodegenerative diseases. Our results indicated that our method might be an effective and valuable tool for detecting potential biomarkers of AD.


Potential Utility of Plasma P-Tau and Neurofilament Light Chain as Surrogate Biomarkers for Preventive Clinical Trials.

  • Pamela C L Ferreira‎ et al.
  • Neurology‎
  • 2023‎

To test the utility of longitudinal changes in plasma phosphorylated tau 181 (p-tau181) and neurofilament light chain (NfL) as surrogate markers for clinical trials targeting cognitively unimpaired (CU) populations.


Fine-grained age-matching improves atrophy-based detection of mild cognitive impairment more than amyloid-negative reference subjects.

  • Nils Richter‎ et al.
  • NeuroImage. Clinical‎
  • 2023‎

In clinical practice, differentiating between age-related gray matter (GM) atrophy and neurodegeneration-related atrophy at early disease stages, such as mild cognitive impairment (MCI), remains challenging. We hypothesized that fined-grained adjustment for age effects and using amyloid-negative reference subjects could increase classification accuracy.


Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients.

  • Qian Zhao‎ et al.
  • Frontiers in neurology‎
  • 2019‎

Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake. Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed. Results: 18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions. Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification.


Development and validation of a novel dementia of Alzheimer's type (DAT) score based on metabolism FDG-PET imaging.

  • Karteek Popuri‎ et al.
  • NeuroImage. Clinical‎
  • 2018‎

Fluorodeoxyglucose positron emission tomography (FDG-PET) imaging based 3D topographic brain glucose metabolism patterns from normal controls (NC) and individuals with dementia of Alzheimer's type (DAT) are used to train a novel multi-scale ensemble classification model. This ensemble model outputs a FDG-PET DAT score (FPDS) between 0 and 1 denoting the probability of a subject to be clinically diagnosed with DAT based on their metabolism profile. A novel 7 group image stratification scheme is devised that groups images not only based on their associated clinical diagnosis but also on past and future trajectories of the clinical diagnoses, yielding a more continuous representation of the different stages of DAT spectrum that mimics a real-world clinical setting. The potential for using FPDS as a DAT biomarker was validated on a large number of FDG-PET images (N=2984) obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database taken across the proposed stratification, and a good classification AUC (area under the curve) of 0.78 was achieved in distinguishing between images belonging to subjects on a DAT trajectory and those images taken from subjects not progressing to a DAT diagnosis. Further, the FPDS biomarker achieved state-of-the-art performance on the mild cognitive impairment (MCI) to DAT conversion prediction task with an AUC of 0.81, 0.80, 0.77 for the 2, 3, 5 years to conversion windows respectively.


Rey's Auditory Verbal Learning Test scores can be predicted from whole brain MRI in Alzheimer's disease.

  • Elaheh Moradi‎ et al.
  • NeuroImage. Clinical‎
  • 2017‎

Rey's Auditory Verbal Learning Test (RAVLT) is a powerful neuropsychological tool for testing episodic memory, which is widely used for the cognitive assessment in dementia and pre-dementia conditions. Several studies have shown that an impairment in RAVLT scores reflect well the underlying pathology caused by Alzheimer's disease (AD), thus making RAVLT an effective early marker to detect AD in persons with memory complaints. We investigated the association between RAVLT scores (RAVLT Immediate and RAVLT Percent Forgetting) and the structural brain atrophy caused by AD. The aim was to comprehensively study to what extent the RAVLT scores are predictable based on structural magnetic resonance imaging (MRI) data using machine learning approaches as well as to find the most important brain regions for the estimation of RAVLT scores. For this, we built a predictive model to estimate RAVLT scores from gray matter density via elastic net penalized linear regression model. The proposed approach provided highly significant cross-validated correlation between the estimated and observed RAVLT Immediate (R = 0.50) and RAVLT Percent Forgetting (R = 0.43) in a dataset consisting of 806 AD, mild cognitive impairment (MCI) or healthy subjects. In addition, the selected machine learning method provided more accurate estimates of RAVLT scores than the relevance vector regression used earlier for the estimation of RAVLT based on MRI data. The top predictors were medial temporal lobe structures and amygdala for the estimation of RAVLT Immediate and angular gyrus, hippocampus and amygdala for the estimation of RAVLT Percent Forgetting. Further, the conversion of MCI subjects to AD in 3-years could be predicted based on either observed or estimated RAVLT scores with an accuracy comparable to MRI-based biomarkers.


Accurate Bayesian segmentation of thalamic nuclei using diffusion MRI and an improved histological atlas.

  • Henry F J Tregidgo‎ et al.
  • NeuroImage‎
  • 2023‎

The human thalamus is a highly connected brain structure, which is key for the control of numerous functions and is involved in several neurological disorders. Recently, neuroimaging studies have increasingly focused on the volume and connectivity of the specific nuclei comprising this structure, rather than looking at the thalamus as a whole. However, accurate identification of cytoarchitectonically designed histological nuclei on standard in vivo structural MRI is hampered by the lack of image contrast that can be used to distinguish nuclei from each other and from surrounding white matter tracts. While diffusion MRI may offer such contrast, it has lower resolution and lacks some boundaries visible in structural imaging. In this work, we present a Bayesian segmentation algorithm for the thalamus. This algorithm combines prior information from a probabilistic atlas with likelihood models for both structural and diffusion MRI, allowing segmentation of 25 thalamic labels per hemisphere informed by both modalities. We present an improved probabilistic atlas, incorporating thalamic nuclei identified from histology and 45 white matter tracts surrounding the thalamus identified in ultra-high gradient strength diffusion imaging. We present a family of likelihood models for diffusion tensor imaging, ensuring compatibility with the vast majority of neuroimaging datasets that include diffusion MRI data. The use of these diffusion likelihood models greatly improves identification of nuclear groups versus segmentation based solely on structural MRI. Dice comparison of 5 manually identifiable groups of nuclei to ground truth segmentations show improvements of up to 10 percentage points. Additionally, our chosen model shows a high degree of reliability, with median test-retest Dice scores above 0.85 for four out of five nuclei groups, whilst also offering improved detection of differential thalamic involvement in Alzheimer's disease (AUROC 81.98%). The probabilistic atlas and segmentation tool will be made publicly available as part of the neuroimaging package FreeSurfer (https://freesurfer.net/fswiki/ThalamicNucleiDTI).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: