Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 103 papers

Lectin-Glycan Interaction Network-Based Identification of Host Receptors of Microbial Pathogenic Adhesins.

  • Francesco S Ielasi‎ et al.
  • mBio‎
  • 2016‎

The first step in the infection of humans by microbial pathogens is their adherence to host tissue cells, which is frequently based on the binding of carbohydrate-binding proteins (lectin-like adhesins) to human cell receptors that expose glycans. In only a few cases have the human receptors of pathogenic adhesins been described. A novel strategy-based on the construction of a lectin-glycan interaction (LGI) network-to identify the potential human binding receptors for pathogenic adhesins with lectin activity was developed. The new approach is based on linking glycan array screening results of these adhesins to a human glycoprotein database via the construction of an LGI network. This strategy was used to detect human receptors for virulent Escherichia coli (FimH adhesin), and the fungal pathogens Candida albicans (Als1p and Als3p adhesins) and C. glabrata (Epa1, Epa6, and Epa7 adhesins), which cause candidiasis. This LGI network strategy allows the profiling of potential adhesin binding receptors in the host with prioritization, based on experimental binding data, of the most relevant interactions. New potential targets for the selected adhesins were predicted and experimentally confirmed. This methodology was also used to predict lectin interactions with envelope glycoproteins of human-pathogenic viruses. It was shown that this strategy was successful in revealing that the FimH adhesin has anti-HIV activity.


A yellow fever-Zika chimeric virus vaccine candidate protects against Zika infection and congenital malformations in mice.

  • Dieudonné B Kum‎ et al.
  • NPJ vaccines‎
  • 2018‎

The recent Zika virus (ZIKV) epidemic in the Americas led to an intense search for therapeutics and vaccines. Here we report the engineering of a chimeric virus vaccine candidate (YF-ZIKprM/E) by replacing the antigenic surface glycoproteins and the capsid anchor of YFV-17D with those of a prototypic Asian lineage ZIKV isolate. By intracellular passaging, a variant with adaptive mutations in the E protein was obtained. Unlike YFV-17D, YF-ZIKprM/E replicates poorly in mosquito cells. Also, YF-ZIKprM/E does not cause disease nor mortality in interferon α/β, and γ receptor KO AG129 mice nor following intracranial inoculation of BALB/c pups. A single dose as low as 1 × 102 PFU results, as early as 7 days post vaccination, in seroconversion to neutralizing antibodies and confers full protection in AG129 mice against stringent challenge with a lethal inoculum (105 LD50) of either homologous or heterologous ZIKV strains. Induction of multi-functional CD4+ and CD8+ T cell responses against ZIKV structural and YFV-17D non-structural proteins indicates that cellular immunity may also contribute to protection. Vaccine immunogenicity and protection was confirmed in other mouse strains, including after temporal blockade of interferon-receptors in wild-type mice to facilitate ZIKV replication. Vaccination of wild-type NMRI dams with YF-ZIKprM/E results in complete protection of foetuses against brain infections and malformations following a stringent intraplacental challenge with an epidemic ZIKV strain. The particular characteristic of YF-ZIKprM/E in terms of efficacy and its marked attenuation in mice warrants further exploration as a vaccine candidate.


Synthesis and evaluation of 3-alkynyl-5-aryl-7-aza-indoles as broad-spectrum antiviral agents.

  • Belén Martinez-Gualda‎ et al.
  • Frontiers in chemistry‎
  • 2022‎

RNA viral infections, including those caused by respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and Venezuelan Equine encephalitis virus (VEEV), pose a major global health challenge. Here, we report the synthesis and screening of a series of pyrrolo[2,3-b]pyridines targeting RSV, SARS-CoV-2 and/or VEEV. From this campaign, a series of lead compounds was generated that demonstrated antiviral activity in the low single-digit micromolar range against the various viruses and did not show cytotoxicity. These findings highlight the potential of 3-alkynyl-5-aryl-7-aza-indoles as a promising chemotype for the development of broad-spectrum antiviral agents.


Identification of Polyphenol Derivatives as Novel SARS-CoV-2 and DENV Non-Nucleoside RdRp Inhibitors.

  • Shenghua Gao‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

The Coronavirus Disease 2019 (COVID-19) and dengue fever (DF) pandemics both remain to be significant public health concerns in the foreseeable future. Anti-SARS-CoV-2 drugs and vaccines are both indispensable to eliminate the epidemic situation. Here, two piperazine-based polyphenol derivatives DF-47 and DF-51 were identified as potential inhibitors directly blocking the active site of SARS-CoV-2 and DENV RdRp. Data through RdRp inhibition screening of an in-house library and in vitro antiviral study selected DF-47 and DF-51 as effective inhibitors of SARS-CoV-2/DENV polymerase. Moreover, in silico simulation revealed stable binding modes between the DF-47/DF-51 and SARS-CoV-2/DENV RdRp, respectively, including chelating with Mg2+ near polymerase active site. This work discovered the inhibitory effect of two polyphenols on distinct viral RdRp, which are expected to be developed into broad-spectrum, non-nucleoside RdRp inhibitors with new scaffold.


Cryo-EM structures of wild-type and E138K/M184I mutant HIV-1 RT/DNA complexed with inhibitors doravirine and rilpivirine.

  • Abhimanyu K Singh‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Structures trapping a variety of functional and conformational states of HIV-1 reverse transcriptase (RT) have been determined by X-ray crystallography. These structures have played important roles in explaining the mechanisms of catalysis, inhibition, and drug resistance and in driving drug design. However, structures of several desired complexes of RT could not be obtained even after many crystallization or crystal soaking experiments. The ternary complexes of doravirine and rilpivirine with RT/DNA are such examples. Structural study of HIV-1 RT by single-particle cryo-electron microscopy (cryo-EM) has been challenging due to the enzyme's relatively smaller size and higher flexibility. We optimized a protocol for rapid structure determination of RT complexes by cryo-EM and determined six structures of wild-type and E138K/M184I mutant RT/DNA in complexes with the nonnucleoside inhibitors rilpivirine, doravirine, and nevirapine. RT/DNA/rilpivirine and RT/DNA/doravirine complexes have structural differences between them and differ from the typical conformation of nonnucleoside RT inhibitor (NNRTI)-bound RT/double-stranded DNA (dsDNA), RT/RNA-DNA, and RT/dsRNA complexes; the primer grip in RT/DNA/doravirine and the YMDD motif in RT/DNA/rilpivirine have large shifts. The DNA primer 3'-end in the doravirine-bound structure is positioned at the active site, but the complex is in a nonproductive state. In the mutant RT/DNA/rilpivirine structure, I184 is stacked with the DNA such that their relative positioning can influence rilpivirine in the pocket. Simultaneously, E138K mutation opens the NNRTI-binding pocket entrance, potentially contributing to a faster rate of rilpivirine dissociation by E138K/M184I mutant RT, as reported by an earlier kinetic study. These structural differences have implications for understanding molecular mechanisms of drug resistance and for drug design.


High mannose-specific lectin Msl mediates key interactions of the vaginal Lactobacillus plantarum isolate CMPG5300.

  • Shweta Malik‎ et al.
  • Scientific reports‎
  • 2016‎

To characterize the interaction potential of the human vaginal isolate Lactobacillus plantarum CMPG5300, its genome was mined for genes encoding lectin-like proteins. cmpg5300.05_29 was identified as the gene encoding a putative mannose-binding lectin. Phenotypic analysis of a gene knock-out mutant of cmpg5300.05_29 showed that expression of this gene is important for auto-aggregation, adhesion to the vaginal epithelial cells, biofilm formation and binding to mannosylated glycans. Purification of the predicted lectin domain of Cmpg5300.05_29 and characterization of its sugar binding capacity confirmed the specificity of the lectin for high- mannose glycans. Therefore, we renamed Cmpg5300.05_29 as a mannose-specific lectin (Msl). The purified lectin domain of Msl could efficiently bind to HIV-1 glycoprotein gp120 and Candida albicans, and showed an inhibitory activity against biofilm formation of uropathogenic Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Thus, using a combination of molecular lectin characterization and functional assays, we could show that lectin-sugar interactions play a key role in host and pathogen interactions of a prototype isolate of the vaginal Lactobacillus microbiota.


NICTABA and UDA, two GlcNAc-binding lectins with unique antiviral activity profiles.

  • Stephanie C Gordts‎ et al.
  • The Journal of antimicrobial chemotherapy‎
  • 2015‎

This study aimed to assess the antiviral properties of a unique lectin (NICTABA) produced by the tobacco plant, Nicotiana tabacum.


Innate Lymphoid Cells Are Required to Induce Airway Hyperreactivity in a Murine Neutrophilic Asthma Model.

  • Anne-Charlotte Jonckheere‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Non-allergic asthma is driven by multiple endotypes of which neutrophilic and pauci-granulocytic asthma have been best established. However, it is still puzzling what drives inflammation and airway hyperreactivity (AHR) in these patients and how it can be treated effectively. Recently, a potential role of the innate immune system and especially the innate lymphoid cells (ILC) has been proposed.


Signaling properties of the human chemokine receptors CXCR4 and CXCR7 by cellular electric impedance measurements.

  • Jordi Doijen‎ et al.
  • PloS one‎
  • 2017‎

The chemokine receptor 4 (CXCR4) and 7 (CXCR7) are G-protein-coupled receptors involved in various diseases including human cancer. As such, they have become important targets for therapeutic intervention. Cell-based receptor assays, able to detect agents that modulate receptor activity, are of key importance for drug discovery. We evaluated the potential of cellular electric impedance for this purpose. Dose-dependent and specific stimulation of CXCR4 was detected upon addition of its unique chemokine ligand CXCL12. The response magnitude correlated with the CXCR4 expression level. Gαi coupling and signaling contributed extensively to the impedance response, whereas Gαq- and Gβγ-related events had only minor effects on the impedance profile. CXCR7 signaling could not be detected using impedance measurements. However, increasing levels of CXCR7 expression significantly reduced the CXCR4-mediated impedance readout, suggesting a regulatory role for CXCR7 on CXCR4-mediated signaling. Taken together, cellular electric impedance spectroscopy can represent a valuable alternative pharmacological cell-based assay for the identification of molecules targeting CXCR4, but not for CXCR7 in the absence of CXCR4.


Highly stable hexitol based XNA aptamers targeting the vascular endothelial growth factor.

  • Elena Eremeeva‎ et al.
  • Nucleic acids research‎
  • 2019‎

Biomedical applications of nucleic acid aptamers are limited by their rapid degradation in biological fluids and generally demand tedious post-selection modifications that might compromise binding. One possible solution to warrant biostability is to directly evolve chemically modified aptamers from xenobiotic nucleic acids (XNAs). We have isolated fully modified 2'-O-methyl-ribose-1,5-anhydrohexitol nucleic acid (MeORNA-HNA) aptamers targeting the rat vascular endothelial growth factor 164 (rVEGF164). Three sequences have been identified that interact with the target protein with affinities in the low-nanomolar range and HNA modifications appeared to be mandatory for their tight binding. The evolution of these XNA aptamers was accomplished using an in vitro selection procedure starting from a fully sugar-modified library containing a 20mer 2'-OMe-ribonucleotide region followed by a 47mer HNA sequence. The high binding affinity and selectivity of the selected aptamers were confirmed by several methods including gel-shift, fluorescence polarisation, and enzyme-linked oligonucleotide assays. The isolated HNA ligands exhibited higher specificity to the rVEGF164 and human VEGF165 isoforms compared to rat VEGF120, while very low binding efficiencies were observed to streptavidin and thrombin. Furthermore, it was clearly demonstrated that the resulting aptamers possessed a superior stability to degradation in human serum and DNase I solutions.


A chimeric yellow fever-Zika virus vaccine candidate fully protects against yellow fever virus infection in mice.

  • Dieudonné Buh Kum‎ et al.
  • Emerging microbes & infections‎
  • 2020‎

The recent Zika virus (ZIKV) epidemic in the Americas, followed by the yellow fever virus (YFV) outbreaks in Angola and Brazil highlight the urgent need for safe and efficient vaccines against the ZIKV as well as much greater production capacity for the YFV-17D vaccine. Given that the ZIKV and the YFV are largely prevalent in the same geographical areas, vaccines that would provide dual protection against both pathogens may obviously offer a significant benefit. We have recently engineered a chimeric vaccine candidate (YF-ZIKprM/E) by swapping the sequences encoding the YFV-17D surface glycoproteins prM/E by the corresponding sequences of the ZIKV. A single vaccine dose of YF-ZIKprM/E conferred complete protection against a lethal challenge with wild-type ZIKV strains. Surprisingly, this vaccine candidate also efficiently protected against lethal YFV challenge in various mouse models. We demonstrate that CD8+ but not CD4+ T cells, nor ZIKV neutralizing antibodies are required to confer protection against YFV. The chimeric YF-ZIKprM/E vaccine may thus be considered as a dual vaccine candidate efficiently protecting mice against both the ZIKV and the YFV, and this following a single dose immunization. Our finding may be particularly important in the rational design of vaccination strategies against flaviviruses, in particular in areas where YFV and ZIKV co-circulate.


Lectin-Like Molecules of Lactobacillus rhamnosus GG Inhibit Pathogenic Escherichia coli and Salmonella Biofilm Formation.

  • Mariya I Petrova‎ et al.
  • PloS one‎
  • 2016‎

Increased antibiotic resistance has catalyzed the research on new antibacterial molecules and alternative strategies, such as the application of beneficial bacteria. Since lectin molecules have unique sugar-recognizing capacities, and pathogens are often decorated with sugars that affect their survival and infectivity, we explored whether lectins from the probiotic strain Lactobacillus rhamnosus GG have antipathogenic properties.


STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters.

  • Robbert Boudewijns‎ et al.
  • Nature communications‎
  • 2020‎

Emergence of SARS-CoV-2 causing COVID-19 has resulted in hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that Syrian hamsters, in contrast to mice, are highly permissive to SARS-CoV-2 and develop bronchopneumonia and strong inflammatory responses in the lungs with neutrophil infiltration and edema, further confirmed as consolidations visualized by micro-CT alike in clinical practice. Moreover, we identify an exuberant innate immune response as key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients.


Development of a live biotherapeutic throat spray with lactobacilli targeting respiratory viral infections.

  • Irina Spacova‎ et al.
  • Microbial biotechnology‎
  • 2023‎

Respiratory viruses such as influenza viruses, respiratory syncytial virus (RSV), and coronaviruses initiate infection at the mucosal surfaces of the upper respiratory tract (URT), where the resident respiratory microbiome has an important gatekeeper function. In contrast to gut-targeting administration of beneficial bacteria against respiratory viral disease, topical URT administration of probiotics is currently underexplored, especially for the prevention and/or treatment of viral infections. Here, we report the formulation of a throat spray with live lactobacilli exhibiting several in vitro mechanisms of action against respiratory viral infections, including induction of interferon regulatory pathways and direct inhibition of respiratory viruses. Rational selection of Lactobacillaceae strains was based on previously documented beneficial properties, up-scaling and industrial production characteristics, clinical safety parameters, and potential antiviral and immunostimulatory efficacy in the URT demonstrated in this study. Using a three-step selection strategy, three strains were selected and further tested in vitro antiviral assays and in formulations: Lacticaseibacillus casei AMBR2 as a promising endogenous candidate URT probiotic with previously reported barrier-enhancing and anti-pathogenic properties and the two well-studied model strains Lacticaseibacillus rhamnosus GG and Lactiplantibacillus plantarum WCFS1 that display immunomodulatory capacities. The three strains and their combination significantly reduced the cytopathogenic effects of RSV, influenza A/H1N1 and B viruses, and HCoV-229E coronavirus in co-culture models with bacteria, virus, and host cells. Subsequently, these strains were formulated in a throat spray and human monocytes were employed to confirm the formulation process did not reduce the interferon regulatory pathway-inducing capacity. Administration of the throat spray in healthy volunteers revealed that the lactobacilli were capable of temporary colonization of the throat in a metabolically active form. Thus, the developed spray with live lactobacilli will be further explored in the clinic as a potential broad-acting live biotherapeutic strategy against respiratory viral diseases.


Iterative Chemical Engineering of Vancomycin Leads to Novel Vancomycin Analogs With a High in Vitro Therapeutic Index.

  • Nigam M Mishra‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Vancomycin is a glycopeptide antibiotic that inhibits transpeptidation during cell wall synthesis by binding to the D-Ala-D-Ala termini of lipid II. For long, it has been used as a last resort antibiotic. However, since the emergence of the first vancomycin-resistant enterococci in 1987, vancomycin resistance has become widespread, especially in hospitals. We have synthesized and evaluated 110 vancomycin analogs modified at the C-terminal carboxyl group of the heptapeptide moiety with R2NHR1NH2 substituents. Through iterative optimizations of the substituents, we identified vancomycin analogs that fully restore (or even exceed) the original inhibitory activity against vancomycin-resistant enterococci (VRE), vancomycin-intermediate (VISA) and vancomycin-resistant Staphylococcus aureus (VRSA) strains. The best analogs have improved growth inhibitory activity and in vitro therapeutic indices against a broad set of VRE and methicillin-resistant S. aureus (MRSA) isolates. They also exceed the activity of vancomycin against Clostridium difficile ribotypes. Vanc-39 and Vanc-42 have a low probability to provoke antibiotic resistance, and overcome different vancomycin resistance mechanisms (VanA, VanB, and VanC1).


FO-SPR biosensor calibrated with recombinant extracellular vesicles enables specific and sensitive detection directly in complex matrices.

  • Yagmur Yildizhan‎ et al.
  • Journal of extracellular vesicles‎
  • 2021‎

Extracellular vesicles (EVs) have drawn huge attention for diagnosing myriad of diseases, including cancer. However, the EV detection and analyses procedures often lack much desired sample standardization. To address this, we used well-characterized recombinant EVs (rEVs) for the first time as a biological reference material in developing a fiber optic surface plasmon resonance (FO-SPR) bioassay. In this context, EV binding on the FO-SPR probes was achieved only with EV-specific antibodies (e.g. anti-CD9 and anti-CD63) but not with non-specific anti-IgG. To increase detection sensitivity, we tested six different combinations of EV-specific antibodies in a sandwich bioassay. Calibration curves were generated with two most effective combinations (anti-CD9/Banti-CD81 and anti-CD63/Banti-CD9), resulting in 103 and 104 times higher sensitivity than the EV concentration in human blood plasma from healthy or cancer patients, respectively. Additionally, by using anti-CD63/Banti-CD9, we detected rEVs spiked in cell culture medium and HEK293 endogenous EVs in the same matrix without any prior EV purification or enrichment. Lastly, we selectively captured breast cancer cell EVs spiked in blood plasma using anti-EpCAM antibody on the FO-SPR surface. The obtained results combined with FO-SPR real-time monitoring, fast response time and ease of operation, demonstrate its outstanding potential for EV quantification and analysis.


The Low-Cost Compound Lignosulfonic Acid (LA) Exhibits Broad-Spectrum Anti-HIV and Anti-HSV Activity and Has Potential for Microbicidal Applications.

  • Stephanie C Gordts‎ et al.
  • PloS one‎
  • 2015‎

Lignosulfonic acid (LA), a low-cost lignin-derived polyanionic macromolecule, was extensively studied for its anti-HIV and anti-HSV activity in various cellular assays, its mechanism of viral inhibition and safety profile as potential microbicide.


SARS-CoV-2 Virion Infectivity and Cytokine Production in Primary Human Airway Epithelial Cells.

  • Thuc Nguyen Dan Do‎ et al.
  • Viruses‎
  • 2022‎

The emergence of new SARS-CoV-2 variants and the replacement of preceding isolates have been observed through B.1.1.7, B.1.351, B.1.617.2, and B.1.1.529 lineages (corresponding to alpha, beta, delta, and omicron variants of concern (VoC), respectively). However, there is still a lack of biological evidence to which extent those VoC differ from the ancestral lineages. By exploiting human airway epithelial cell (HAEC) cultures, which closely resemble the human airway architecture and physiology, we report distinctive SARS-CoV-2 tropism in different respiratory tissues. In general, SARS-CoV-2 VoC predominantly infect and replicate in HAEC better than the progenitor USA-WA1 isolate or the BavPat1 isolate, which contains the D614G mutation, even though there is little to no difference between variants regarding their infectivity (i.e., virion-per-vRNA copy ratio). We also observe differential tissue-specific innate immunity activation between the upper and lower respiratory tissues in the presence of the virus. Our study provides better comprehension of the behavior of the different VoC in this physiologically relevant ex vivo model.


The lectin-like protein 1 in Lactobacillus rhamnosus GR-1 mediates tissue-specific adherence to vaginal epithelium and inhibits urogenital pathogens.

  • Mariya I Petrova‎ et al.
  • Scientific reports‎
  • 2016‎

The probiotic Lactobacillus rhamnosus GR-1 has been documented to survive implantation onto the vaginal epithelium and interfere with urogenital pathogens. However, the molecular mechanisms involved are largely unknown. Here, we report for the first time the construction of dedicated knock-out mutants in L. rhamnosus GR-1 to enable the study of gene functions. In a search for genes responsible for the adherence capacity of L. rhamnosus GR-1, a genomic region encoding a protein with homology to lectin-like proteins was identified. Phenotypic analyses of the knock-out mutant of L. rhamnosus GR-1 revealed a two-fold decreased adhesion to the vaginal and ectocervical epithelial cell lines compared to wild-type. In contrast, the adhesion to gastro-intestinal epithelial (Caco2) and endocervical cell lines (Hela and End1/E6E7) was not drastically affected by the mutation, suggesting that the LGR-1_Llp1 lectins mediates tissue tropism. The purified LGR-1_Llp1 protein also inhibited biofilm formation and adhesion of uropathogenic Escherichia coli. For the first time, an important role for a novel lectin-like protein in the adhesion capacity and host cell-specific interaction of a vaginal probiotic Lactobacillus strain has been discovered, with an additional role in pathogen inhibition.


Comparison of cell-based assays for the identification and evaluation of competitive CXCR4 inhibitors.

  • Anneleen Van Hout‎ et al.
  • PloS one‎
  • 2017‎

The chemokine receptor CXCR4 is activated by its unique chemokine ligand CXCL12 and regulates many physiological and developmental processes such as hematopoietic cell trafficking. CXCR4 is also one of the main co-receptors for human immunodeficiency virus (HIV) entry. Dysfunction of the CXCL12/CXCR4 axis contributes to several human pathologies, including cancer and inflammatory diseases. Consequently, inhibition of CXCR4 activation is recognized as an attractive target for therapeutic intervention. In this regard, numerous agents modifying CXCR4 activity have been evaluated in in vitro experimental studies and pre-clinical models. Here, we evaluated a CXCL12 competition binding assay for its potential as a valuable initial screen for functional and competitive CXCR4 inhibitors. In total, 11 structurally diverse compounds were included in a side-by-side comparison of in vitro CXCR4 cell-based assays, such as CXCL12 competition binding, CXCL12-induced calcium signaling, CXCR4 internalization, CXCL12-guided cell migration and CXCR4-specific HIV-1 replication experiments. Our data indicated that agents that inhibit CXCL12 binding, i.e. the anti-CXCR4 peptide analogs T22, T140 and TC14012 and the small molecule antagonists AMD3100, AMD3465, AMD11070 and IT1t showed inhibitory activity with consistent relative potencies in all further applied CXCR4-related assays. Accordingly, agents exerting no or very weak receptor binding (i.e., CTCE-9908, WZ811, Me6TREN and gambogic acid) showed no or very poor anti-CXCR4 inhibitory activity. Thus, CXCL12 competition binding studies were proven to be highly valuable as an initial screening assay and indicative for the pharmacological and functional profile of competitive CXCR4 antagonists, which will help the design of new potent CXCR4 inhibitors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: