Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Genome and Evolutionary Analysis of Nosema ceranae: A Microsporidian Parasite of Honey Bees.

  • Qiang Huang‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Microsporidia comprise a phylum of single cell, intracellular parasites and represent the earliest diverging branch in the fungal kingdom. The microsporidian parasite Nosema ceranae primarily infects honey bee gut epithelial cells, leading to impaired memory, suppressed host immune responses and colony collapse under certain circumstances. As the genome of N. ceranae is challenging to assembly due to very high genetic diversity and repetitive region, the genome was re-sequenced using long reads. We present a robust 8.8 Mbp genome assembly of 2,280 protein coding genes, including a high number of genes involved in transporting nutrients and energy, as well as drug resistance when compared with sister species Nosema apis. We also describe the loss of the critical protein Dicer in approximately half of the microsporidian species, giving new insights into the availability of RNA interference pathway in this group. Our results provided new insights into the pathogenesis of N. ceranae and a blueprint for treatment strategies that target this parasite without harming honey bees. The unique infectious apparatus polar filament and transportation pathway members can help to identify treatments to control this parasite.


Interactions Between Thiamethoxam and Deformed Wing Virus Can Drastically Impair Flight Behavior of Honey Bees.

  • Marianne Coulon‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Exposure to multiple stress factors is believed to contribute to honey bee colony decline. However, little is known about how co-exposure to stress factors can alter the survival and behavior of free-living honey bees in colony conditions. We therefore studied the potential interaction between a neonicotinoid pesticide, thiamethoxam, and a highly prevalent honey bee pathogen, Deformed wing virus (DWV). For this purpose, tagged bees were exposed to DWV by feeding or injection, and/or to field-relevant doses of thiamethoxam, then left in colonies equipped with optical bee counters to monitor flight activity. DWV loads and the expression of immune genes were quantified. A reduction in vitellogenin expression level was observed in DWV-injected bees and was associated with precocious onset of foraging. Combined exposure to DWV and thiamethoxam did not result in higher DWV loads compared to bees only exposed to DWV, but induced precocious foraging, increased the risk of not returning to the hive after the first flight, and decreased survival when compared to single stress exposures. We therefore provided the first evidence for deleterious interactions between DWV and thiamethoxam in natural conditions.


North American Propolis Extracts From Upstate New York Decrease Nosema ceranae (Microsporidia) Spore Levels in Honey Bees (Apis mellifera).

  • Andre J Burnham‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Nosema ceranae infections in honey bees (Apis mellifera) pose a severe threat to colony health. Beekeepers have used dicyclohexylammonium fumagillin to control Nosema apis, although it may be ineffective against N. ceranae. We investigated the ability of various propolis extracts collected from Upstate New York (United States) to decrease in vivo N. ceranae infection levels when fed ad libitum to N. ceranae-infected honey bees. Propolis extracts, most notably a dichloromethane extract, significantly lowered spore levels in a dose-dependent fashion 4 days post inoculation. When testing the in vitro anti-Nosema activity of propolis extracts, we report for the first time that spore viability was unaffected after a 24 h exposure to propolis extracts. These results present evidence that propolis extracts may effectively lower Microsporidia infections in honey bees, and that direct exposure of environmental spores to propolis alone does not kill N. ceranae.


Kunkecin A, a New Nisin Variant Bacteriocin Produced by the Fructophilic Lactic Acid Bacterium, Apilactobacillus kunkeei FF30-6 Isolated From Honey Bees.

  • Takeshi Zendo‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Apilactobacillus kunkeei FF30-6 isolated from healthy honey bees synthesizes the bacteriocin, which exhibits antimicrobial activity against Melissococcus plutonius. The bacteriocin, kunkecin A, was purified through three-step chromatography, and mass spectrometry revealed that its relative molecular mass was 4218.3. Edman degradation of purified kunkecin A showed only the N-terminal residue, isoleucine. Hence, alkaline alkylation made the subsequent amino acid residues accessible to Edman degradation, and 30 cycles were sequenced with 11 unidentified residues. Whole genome sequencing of A. kunkeei FF30-6, followed by Sanger sequencing, revealed that the genes encoding the proteins involved in lantibiotic biosynthesis were within the plasmid, pKUNFF30-6. Most of the identified proteins exhibited significant sequence similarities to the biosynthetic proteins of nisin A and its variants, such as subtilin. However, the kunkecin A gene cluster lacked the genes corresponding to nisI, nisR, and nisK of the nisin A biosynthetic gene cluster. A comparison of the gene products of kukA and nisA (kunkecin A and nisin A structural genes, respectively) suggested that they had similar post-translational modifications. Furthermore, the structure of kunkecin A was proposed based on a comparison of the observed and calculated relative molecular masses of kunkecin A. The structural analysis revealed that kunkecin A and nisin A had a similar mono-sulfide linkage pattern. Purified kunkecin A exhibited a narrow antibacterial spectrum, but high antibacterial activity against M. plutonius. Kunkecin A is the first bacteriocin to be characterized in fructophilic lactic acid bacteria and is the first nisin-type lantibiotic found in the family Lactobacillaceae.


The Succession of the Gut Microbiota in Insects: A Dynamic Alteration of the Gut Microbiota During the Whole Life Cycle of Honey Bees (Apis cerana).

  • Zhi-Xiang Dong‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

The Asian honey bee Apis cerana is a valuable biological resource insect that plays an important role in the ecological environment and agricultural economy. The composition of the gut microbiota has a great influence on the health and development of the host. However, studies on the insect gut microbiota are rarely reported, especially studies on the dynamic succession of the insect gut microbiota. Therefore, this study used high-throughput sequencing technology to sequence the gut microbiota of A. cerana at different developmental stages (0 days post emergence (0 dpe), 1 dpe, 3 dpe, 7 dpe, 12 dpe, 19 dpe, 25 dpe, 30 dpe, and 35 dpe). The results of this study indicated that the diversity of the gut microbiota varied significantly at different developmental stages (ACE, P = 0.045; Chao1, P = 0.031; Shannon, P = 0.0019; Simpson, P = 0.041). In addition, at the phylum and genus taxonomic levels, the dominant constituents in the gut microbiota changed significantly at different developmental stages. Our results also suggest that environmental exposure in the early stages of development has the greatest impact on the gut microbiota. The results of this study reveal the general rule of gut microbiota succession in the A. cerana life cycle. This study not only deepens our understanding of the colonization pattern of the gut microbiota in workers but also provides more comprehensive information for exploring the colonization of the gut microbiota in insects and other animals.


Study of the Metatranscriptome of Eight Social and Solitary Wild Bee Species Reveals Novel Viruses and Bee Parasites.

  • Karel Schoonvaere‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Bees are associated with a remarkable diversity of microorganisms, including unicellular parasites, bacteria, fungi, and viruses. The application of next-generation sequencing approaches enables the identification of this rich species composition as well as the discovery of previously unknown associations. Using high-throughput polyadenylated ribonucleic acid (RNA) sequencing, we investigated the metatranscriptome of eight wild bee species (Andrena cineraria, Andrena fulva, Andrena haemorrhoa, Bombus terrestris, Bombus cryptarum, Bombus pascuorum, Osmia bicornis, and Osmia cornuta) sampled from four different localities in Belgium. Across the RNA sequencing libraries, 88-99% of the taxonomically informative reads were of the host transcriptome. Four viruses with homology to insect pathogens were found including two RNA viruses (belonging to the families Iflaviridae and Tymoviridae that harbor already viruses of honey bees), a double stranded DNA virus (family Nudiviridae) and a single stranded DNA virus (family Parvoviridae). In addition, we found genomic sequences of 11 unclassified arthropod viruses (related to negeviruses, sobemoviruses, totiviruses, rhabdoviruses, and mononegaviruses), seven plant pathogenic viruses, and one fungal virus. Interestingly, nege-like viruses appear to be widespread, host-specific, and capable of attaining high copy numbers inside bees. Next to viruses, three novel parasite associations were discovered in wild bees, including Crithidia pragensis and a tubulinosematid and a neogregarine parasite. Yeasts of the genus Metschnikowia were identified in solitary bees. This study gives a glimpse of the microorganisms and viruses associated with social and solitary wild bees and demonstrates that their diversity exceeds by far the subset of species first discovered in honey bees.


Pollen Streptomyces Produce Antibiotic That Inhibits the Honey Bee Pathogen Paenibacillus larvae.

  • Kirk J Grubbs‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Humans use natural products to treat disease; similarly, some insects use natural products produced by Actinobacteria to combat infectious pathogens. Honey bees, Apis mellifera, are ecologically and economically important for their critical role as plant pollinators and are host to diverse and potentially virulent pathogens that threaten hive health. Here, we provide evidence that Actinobacteria that can suppress pathogenic microbes are associated with A. mellifera. We show through culture-dependent approaches that Actinobacteria in the genus Streptomyces are commonly isolated from foraging bees, and especially common in pollen stores. One strain, isolated from pollen stores, exhibited pronounced inhibitory activity against Paenibacillus larvae, the causative agent of American foulbrood. Bioassay-guided HPLC fractionation, followed by NMR and mass spectrometry, identified the known macrocyclic polyene lactam, piceamycin that was responsible for this activity. Further, we show that in its purified form, piceamycin has potent inhibitory activity toward P. larvae. Our results suggest that honey bees may use pollen-derived Actinobacteria and their associated small molecules to mediate colony health. Given the importance of honey bees to modern agriculture and their heightened susceptibility to disease, the discovery and development of antibiotic compounds from hives could serve as an important strategy in supporting disease management within apiaries.


Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures.

  • Madhavi L Kakumanu‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2-V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation.


Solitary bee larvae modify bacterial diversity of pollen provisions in the stem-nesting bee, Osmia cornifrons (Megachilidae).

  • Jordan G Kueneman‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

Microbes, including diverse bacteria and fungi, play an important role in the health of both solitary and social bees. Among solitary bee species, in which larvae remain in a closed brood cell throughout development, experiments that modified or eliminated the brood cell microbiome through sterilization indicated that microbes contribute substantially to larval nutrition and are in some cases essential for larval development. To better understand how feeding larvae impact the microbial community of their pollen/nectar provisions, we examine the temporal shift in the bacterial community in the presence and absence of actively feeding larvae of the solitary, stem-nesting bee, Osmia cornifrons (Megachilidae). Our results indicate that the O. cornifrons brood cell bacterial community is initially diverse. However, larval solitary bees modify the microbial community of their pollen/nectar provisions over time by suppressing or eliminating rare taxa while favoring bacterial endosymbionts of insects and diverse plant pathogens, perhaps through improved conditions or competitive release. We suspect that the proliferation of opportunistic plant pathogens may improve nutrient availability of developing larvae through degradation of pollen. Thus, the health and development of solitary bees may be interconnected with pollen bacterial diversity and perhaps with the propagation of plant pathogens.


Transgenerational genomic analyses reveal allelic oscillation and purifying selection in a gut parasite Nosema ceranae.

  • Xiuxiu Wei‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

Standing genetic variation is the predominant source acted on by selection. Organisms with high genetic diversity generally show faster responses toward environmental change. Nosema ceranae is a microsporidian parasite of honey bees, infecting midgut epithelial cells. High genetic diversity has been found in this parasite, but the mechanism for the parasite to maintain this diversity remains unclear. This study involved continuous inoculation of N. ceranae to honey bees. We found that the parasites slowly increased genetic diversity over three continuous inoculations. The number of lost single nucleotide variants (SNVs) was balanced with novel SNVs, which were mainly embedded in coding regions. Classic allele frequency oscillation was found at the regional level along the genome, and the associated genes were enriched in apoptosis regulation and ATP binding. The ratio of synonymous and non-synonymous substitution suggests a purifying selection, and our results provide novel insights into the evolutionary dynamics in microsporidian parasites.


Resistance and Vulnerability of Honeybee (Apis mellifera) Gut Bacteria to Commonly Used Pesticides.

  • Ana Cuesta-Maté‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Agricultural and apicultural practices expose honeybees to a range of pesticides that have the potential to negatively affect their physiology, neurobiology, and behavior. Accumulating evidence suggests that these effects extend to the honeybee gut microbiome, which serves important functions for honeybee health. Here we test the potential effects of the pesticides thiacloprid, acetamiprid, and oxalic acid on the gut microbiota of honeybees, first in direct in vitro inhibition assays and secondly in an in vivo caged bee experiment to test if exposure leads to gut microbiota community changes. We found that thiacloprid did not inhibit the honeybee core gut bacteria in vitro, nor did it affect overall community composition or richness in vivo. Acetamiprid did also not inhibit bacterial growth in vitro, but it did affect community structure within bees. The eight bacterial genera tested showed variable levels of susceptibility to oxalic acid in vitro. In vivo, treatment with this pesticide reduced amplicon sequence variant (ASV) richness and affected gut microbiome composition, with most marked impact on the common crop bacteria Lactobacillus kunkeei and the genus Bombella. We conducted network analyses which captured known associations between bacterial members and illustrated the sensitivity of the microbiome to environmental stressors. Our findings point to risks of honeybee exposure to oxalic acid, which has been deemed safe for use in treatment against Varroa mites in honeybee colonies, and we advocate for more extensive assessment of the long-term effects that it may have on honeybee health.


Transcriptome Profiling Reveals a Novel Mechanism of Antiviral Immunity Upon Sacbrood Virus Infection in Honey Bee Larvae (Apis cerana).

  • Yulong Guo‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

The honey bee is one of the most important pollinators in the agricultural system and is responsible for pollinating a third of all food we eat. Sacbrood virus (SBV) is a member of the virus family Iflaviridae and affects honey bee larvae and causes particularly devastating disease in the Asian honey bees, Apis cerana. Chinese Sacbrood virus (CSBV) is a geographic strain of SBV identified in China and has resulted in mass death of honey bees in China in recent years. However, the molecular mechanism underlying SBV infection in the Asian honey bee has remained unelucidated. In this present study, we employed high throughput next-generation sequencing technology to study the host transcriptional responses to CSBV infection in A. cerana larvae, and were able to identify genome-wide differentially expressed genes associated with the viral infection. Our study identified 2,534 differentially expressed genes (DEGs) involved in host innate immunity including Toll and immune deficiency (IMD) pathways, RNA interference (RNAi) pathway, endocytosis, etc. Notably, the expression of genes encoding antimicrobial peptides (abaecin, apidaecin, hymenoptaecin, and defensin) and core components of RNAi such as Dicer-like and Ago2 were found to be significantly upregulated in CSBV infected larvae. Most importantly, the expression of Sirtuin target genes, a family of signaling proteins involved in metabolic regulation, apoptosis, and intracellular signaling was found to be changed, providing the first evidence of the involvement of Sirtuin signaling pathway in insects' immune response to a virus infection. The results obtained from this study provide novel insights into the molecular mechanism and immune responses involved in CSBV infection, which in turn will contribute to the development of diagnostics and treatment for the diseases in honey bees.


Presence of Apis Rhabdovirus-1 in Populations of Pollinators and Their Parasites from Two Continents.

  • Sofia Levin‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

The viral ecology of bee communities is complex, where viruses are readily shared among co-foraging bee species. Additionally, in honey bees (Apis mellifera), many viruses are transmitted - and their impacts exacerbated - by the parasitic Varroa destructor mite. Thus far, the viruses found to be shared across bee species and transmitted by V. destructor mites are positive-sense single-stranded RNA viruses. Recently, a negative-sense RNA enveloped virus, Apis rhabdovirus-1 (ARV-1), was found in A. mellifera honey bees in Africa, Europe, and islands in the Pacific. Here, we describe the identification - using a metagenomics approach - of ARV-1 in two bee species (A. mellifera and Bombus impatiens) and in V. destructor mites from populations collected in the United States and Israel. We confirmed the presence of ARV-1 in pools of A. mellifera, B. impatiens, and V. destructor from Israeli and U.S. populations by RT-PCR and found that it can reach high titers in individual honey bees and mites (107-108 viral genomic copies per individual). To estimate the prevalence of ARV-1 in honey bee populations, we screened 104 honey bee colonies across Israel, with 21 testing ARV-1-positive. Tagged-primer-mediated RT-PCR analysis detected the presence of the positive-sense ARV-1 RNA in A. mellifera and V. destructor, indicating that ARV-1 replicates in both hosts. This is the first report of the presence of ARV-1 in B. impatiens and of the replication of a rhabdovirus in A. mellifera and V. destructor. Our data suggest that Varroa mites could act as an ARV-1 vector; however, the presence of ARV-1 in B. impatiens (which are not parasitized by Varroa) suggests that it may not require the mite for transmission and ARV-1 may be shared among co-foraging bee species. Given that ARV-1 is found in non-Apis bee species, and because "ARV" is used for the Adelaide River virus, we propose that this virus should be called bee rhabdovirus 1 and abbreviated BRV-1. These results greatly expand our understanding of the diversity of viruses that can infect bee communities, though further analysis is required to determine how infection with this virus impacts these different hosts.


Virus Prevalence and Genetic Diversity Across a Wild Bumblebee Community.

  • David J Pascall‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Viruses are key population regulators, but we have limited knowledge of the diversity and ecology of viruses. This is even the case in wild host populations that provide ecosystem services, where small fitness effects may have major ecological impacts in aggregate. One such group of hosts are the bumblebees, which have a major role in the pollination of food crops and have suffered population declines and range contractions in recent decades. In this study, we investigate the diversity of four recently discovered bumblebee viruses (Mayfield virus 1, Mayfield virus 2, River Liunaeg virus, and Loch Morlich virus), and two previously known viruses that infect both wild bumblebees and managed honeybees (Acute bee paralysis virus and Slow bee paralysis virus) from isolates in Scotland. We investigate the ecological and environmental factors that determine viral presence and absence. We show that the recently discovered bumblebee viruses were more genetically diverse than the viruses shared with honeybees. Coinfection is potentially important in shaping prevalence: we found a strong positive association between River Liunaeg virus and Loch Morlich virus presence after controlling for host species, location and other relevant ecological variables. We tested for a relationship between environmental variables (temperature, UV radiation, wind speed, and prevalence), but as we had few sampling sites, and thus low power for site-level analyses, we could not conclude anything regarding these variables. We also describe the relationship between the bumblebee communities at our sampling sites. This study represents a first step in the description of predictors of bumblebee infection in the wild.


Interactions Among Host-Parasite MicroRNAs During Nosema ceranae Proliferation in Apis mellifera.

  • Jay D Evans‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

We previously identified microRNA (miRNA) from Nosema ceranae and found that knockdowns of transcripts for the parasite protein Dicer greatly reduce parasite reproduction. In order to study parasitic miRNA functions and identify candidate target genes, we fed honey bees infected with N. ceranae with small interfering RNA (siRNA) targeting the N. ceranae gene Dicer. We then deep-sequenced honey bee and N. ceranae miRNAs daily across a full 6-day proliferation cycle. We found seven honey bee and five N. ceranae miRNAs that were significantly differently expressed between the infection and siRNA-Dicer groups. N. ceranae miRNA showed potentially strong impacts on the N. ceranae transcriptome, where over 79% of the total protein coding genes were significantly correlated with one or more miRNAs. N. ceranae miRNAs also can regulate honey bee metabolism and immune response, given parasitic miRNAs were secreted into the cytoplasm. Our results suggest that N. ceranae miRNAs regulate both parasite and host gene expression, providing new insights for microsporidia parasitism evolution.


The Native Dietary Habits of the Two Sympatric Bee Species and Their Effects on Shaping Midgut Microorganisms.

  • Ying Wang‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

The intestinal microbial community composition of different bee species typically has host specificity, yet little is known about the underlying formation mechanism. There are signs that dietary habits vary in different bee species, suggesting that there may be close relationships between dietary habits and intestinal microorganisms. We explored this hypothesis by comparing the dietary habits and gut microbiota of two common bee species (Apis mellifera L. and Apis cerana cerana) in China. Bee bread and midgut samples from wild and laboratory-reared bees were collected, and the differences in intestinal microbial community composition and growth and development before and after the change in dietary habits of different bee species were compared. We found that the two sympatric species had different dietary specializations and similar metagenomic diversities. The microbiota composition differed between the two species. Moreover, we revealed that changes in native dietary habits destroyed the intestinal microbiota community composition, negatively affecting the growth and development of honeybees.


Characterization of the Copy Number and Variants of Deformed Wing Virus (DWV) in the Pairs of Honey Bee Pupa and Infesting Varroa destructor or Tropilaelaps mercedesae.

  • Yunfei Wu‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Recent honey bee colony losses, particularly during the winter, have been shown to be associated with the presence of both ectoparasitic mites and Deformed Wing Virus (DWV). Whilst the role of Varroa destructor mites as a viral vector is well established, the role of Tropilaelaps mercedesae mites in viral transmission has not been fully investigated. In this study, we tested the effects that V. destructor and T. mercedesae infestation have on fluctuation of the DWV copy number and alteration of the virus variants in honey bees by characterizing individual pupae and their infesting mites. We observed that both mite species were associated with increased viral copy number in honey bee pupae. We found a positive correlation between DWV copy number in pupae and copy number in infesting mites, and the same DWV type A variant was present in either low or high copy number in both honey bee pupae and infesting V. destructor. These data also suggest that variant diversity is similar between honey bee pupae and the mites that infest them. These results support a previously proposed hypothesis that DWV suppresses the honey bee immune system when virus copy number reaches a specific threshold, promoting greater replication.


A Bioguided Approach for the Screening of Antibacterial Compounds Isolated From the Hydroalcoholic Extract of the Native Brazilian Bee's Propolis Using Mollicutes as a Model.

  • Sabrina Hochheim‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Nature is a vast source of medicinal substances, including propolis, which has been extensively investigated. Propolis is a resinous substance produced by bees from the exudates of plants that they collect and modify in their jaws; it is a rich and complex matrix with secondary metabolites of diverse botanical origins. The objective of this study was to apply an in vitro bioguided approach using as a model system the mollicutes with a sample of propolis from the Brazilian native bee Melipona quadrifasciata (mandaçaia) in order to identify potential new molecules with antimicrobial activity. A crude hydroalcoholic extract was obtained and submitted to liquid-liquid partitioning with solvents of different polarities, generating four different fractions: aqueous, dichloromethane, butanol, and ethyl acetate fractions. The antimollicute activity assays served as a basis for the bioguided fractionation. The dichloromethane fraction was the most promising, exhibiting a minimal inhibitory concentration (MIC) of 125 μg/mL against Mycoplasma pneumoniae. After purification by column liquid chromatography, a subfraction presenting MIC of 15.6 μg/mL against Mycoplasma genitalium was highlighted. The fractions were also tested against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Using gas chromatography coupled to a mass spectrometer (GC-MS), several volatile compounds were identified in the non-polar fractions of this propolis. However, the more purified molecules had no better antimollicute activity than their original subfraction. Apparently, the synergism among its compounds is largely responsible for the antibacterial activity of the propolis of this native Brazilian bee.


Antimicrobial Compounds in the Volatilome of Social Spider Communities.

  • Alexander Lammers‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Social arthropods such as termites, ants, and bees are among others the most successful animal groups on earth. However, social arthropods face an elevated risk of infections due to the dense colony structure, which facilitates pathogen transmission. An interesting hypothesis is that social arthropods are protected by chemical compounds produced by the arthropods themselves, microbial symbionts, or plants they associate with. Stegodyphus dumicola is an African social spider species, inhabiting communal silk nests. Because of the complex three-dimensional structure of the spider nest antimicrobial volatile organic compounds (VOCs) are a promising protection against pathogens, because of their ability to diffuse through air-filled pores. We analyzed the volatilomes of S. dumicola, their nests, and capture webs in three locations in Namibia and assessed their antimicrobial potential. Volatilomes were collected using polydimethylsiloxane (PDMS) tubes and analyzed using GC/Q-TOF. We showed the presence of 199 VOCs and tentatively identified 53 VOCs. More than 40% of the tentatively identified VOCs are known for their antimicrobial activity. Here, six VOCs were confirmed by analyzing pure compounds namely acetophenone, 1,3-benzothiazole, 1-decanal, 2-decanone, 1-tetradecene, and docosane and for five of these compounds the antimicrobial activity were proven. The nest and web volatilomes had many VOCs in common, whereas the spider volatilomes were more differentiated. Clear differences were identified between the volatilomes from the different sampling sites which is likely justified by differences in the microbiomes of the spiders and nests, the plants, and the different climatic conditions. The results indicate the potential relevance of the volatilomes for the ecological success of S. dumicola.


Evidence for Widespread Associations between Neotropical Hymenopteran Insects and Actinobacteria.

  • Bernal Matarrita-Carranza‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

The evolutionary success of hymenopteran insects has been associated with complex physiological and behavioral defense mechanisms against pathogens and parasites. Among these strategies are symbiotic associations between Hymenoptera and antibiotic-producing Actinobacteria, which provide protection to insect hosts. Herein, we examine associations between culturable Actinobacteria and 29 species of tropical hymenopteran insects that span five families, including Apidae (bees), Vespidae (wasps), and Formicidae (ants). In total, 197 Actinobacteria isolates were obtained from 22 of the 29 different insect species sampled. Through 16S rRNA gene sequences of 161 isolates, we show that 91% of the symbionts correspond to members of the genus Streptomyces with less common isolates belonging to Pseudonocardia and Amycolatopsis. Electron microscopy revealed the presence of filamentous bacteria with Streptomyces morphology in brood chambers of two different species of the eusocial wasps. Four fungal strains in the family Ophiocordycipitacea (Hypocreales) known to be specialized insect parasites were also isolated. Bioassay challenges between the Actinobacteria and their possible targeted pathogenic antagonist (both obtained from the same insect at the genus or species level) provide evidence that different Actinobacteria isolates produced antifungal activity, supporting the hypothesis of a defensive association between the insects and these microbe species. Finally, phylogenetic analysis of 16S rRNA and gyrB demonstrate the presence of five Streptomyces lineages associated with a broad range of insect species. Particularly our Clade I is of much interest as it is composed of one 16S rRNA phylotype repeatedly isolated from different insect groups in our sample. This phylotype corresponds to a previously described lineage of host-associated Streptomyces. These results suggest Streptomyces Clade I is a Hymenoptera host-associated lineage spanning several new insect taxa and ranging from the American temperate to the Neotropical region. Our work thus provides important insights into the widespread distribution of Actinobacteria and hymenopteran insects associations, while also pointing at novel resources that could be targeted for the discovery of active natural products with great potential in medical and biotechnological applications.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: