Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 1 papers out of 1 papers

Long-Term Cellulose Enrichment Selects for Highly Cellulolytic Consortia and Competition for Public Goods.

  • Gina R Lewin‎ et al.
  • mSystems‎
  • 2022‎

The complexity of microbial communities hinders our understanding of how microbial diversity and microbe-microbe interactions impact community functions. Here, using six independent communities originating from the refuse dumps of leaf-cutter ants and enriched using the plant polymer cellulose as the sole source of carbon, we examine how changes in bacterial diversity and interactions impact plant biomass decomposition. Over up to 60 serial transfers (∼8 months) using Whatman cellulose filter paper, cellulolytic ability increased and then stabilized in four enrichment lines and was variable in two lines. Bacterial community characterization using 16S rRNA gene amplicon sequencing showed community succession differed between the highly cellulolytic enrichment lines and those that had slower and more variable cellulose degradation rates. Metagenomic and metatranscriptomic analyses revealed that Cellvibrio and/or Cellulomonas dominated each enrichment line and produced the majority of cellulase enzymes, while diverse taxa were retained within these communities over the duration of transfers. Interestingly, the less cellulolytic communities had a higher diversity of organisms competing for the cellulose breakdown product cellobiose, suggesting that cheating slowed cellulose degradation. In addition, we found competitive exclusion as an important factor shaping all of the communities, with a negative correlation of Cellvibrio and Cellulomonas abundance within individual enrichment lines and the expression of genes associated with the production of secondary metabolites, toxins, and other antagonistic compounds. Our results provide insights into how microbial diversity and competition affect the stability and function of cellulose-degrading communities. IMPORTANCE Microbial communities are a key driver of the carbon cycle through the breakdown of complex polysaccharides in diverse environments including soil, marine systems, and the mammalian gut. However, due to the complexity of these communities, the species-species interactions that impact community structure and ultimately shape the rate of decomposition are difficult to define. Here, we performed serial enrichment on cellulose using communities inoculated from leaf-cutter ant refuse dumps, a cellulose-rich environment. By concurrently tracking cellulolytic ability and community composition and through metagenomic and metatranscriptomic sequencing, we analyzed the ecological dynamics of the enrichment lines. Our data suggest that antagonism is prevalent in these communities and that competition for soluble sugars may slow degradation and lead to community instability. Together, these results help reveal the relationships between competition and polysaccharide decomposition, with implications in diverse areas ranging from microbial community ecology to cellulosic biofuels production.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: