2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Febrile Children with Pneumonia Have Higher Nasopharyngeal Bacterial Load Than Other Children with Fever.

  • Bryndis Bjornsdottir‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

Febrile episodes are common in children and the most frequent reason for attending emergency services. Although most infections have a benign and self-limiting course, severe and sometimes life-threatening infections occur. This prospective study describes a cohort of children presenting to a single-centre pediatric emergency department (ED) with suspected invasive bacterial infection, and explores the relationships between nasopharyngeal microbes and outcomes. All children attending the ED who had a blood culture taken were offered to participate over a two-year period. In addition to conventional medical care, a nasopharyngeal swab was obtained., which was analysed for respiratory viruses and three bacterial species using a quantitative PCR. Fisher's exact test, Wilcoxon rank sum, and multivariable models were used for statistical analyses of the 196 children (75% younger than four years) who were enrolled and had sufficient data for analysis; 92 had severe infections according to the study protocol, while five had bloodstream infections. Radiologically confirmed pneumonia was the most common severe infection found in 44/92 patients. The presence of respiratory viruses and the carriage of Streptococcus pneumoniae and Haemophilus influenzae were associated with a higher risk of pneumonia. Higher density colonisation with these bacteria were independent risk factors for pneumonia, whereas Moraxella catarrhalis carriage was associated with lower risk. Our data support the hypothesis that higher nasopharyngeal density of pneumococci and H. influenzae could play a role in the development of bacterial pneumonia in children. A preceding viral infection of the respiratory tract may be a trigger and play a role in the progression to severe lower respiratory tract infection.


Ultraviolet-C Irradiation, Heat, and Storage as Potential Methods of Inactivating SARS-CoV-2 and Bacterial Pathogens on Filtering Facepiece Respirators.

  • Rhodri Harfoot‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2022‎

The arrival of SARS-CoV-2 to Aotearoa/New Zealand in February 2020 triggered a massive response at multiple levels. Procurement and sustainability of medical supplies to hospitals and clinics during the then upcoming COVID-19 pandemic was one of the top priorities. Continuing access to new personal protective equipment (PPE) was not guaranteed; thus, disinfecting and reusing PPE was considered as a potential alternative. Here, we describe part of a local program intended to test and implement a system to disinfect PPE for potential reuse in New Zealand. We used filtering facepiece respirator (FFR) coupons inoculated with SARS-CoV-2 or clinically relevant multidrug-resistant pathogens (Acinetobacter baumannii Ab5075, methicillin-resistant Staphylococcus aureus USA300 LAC and cystic-fibrosis isolate Pseudomonas aeruginosa LESB58), to evaluate the potential use of ultraviolet-C germicidal irradiation (UV-C) or dry heat treatment to disinfect PPE. An applied UV-C dose of 1000 mJ/cm2 was sufficient to completely inactivate high doses of SARS-CoV-2; however, irregularities in the FFR coupons hindered the efficacy of UV-C to fully inactivate the virus, even at higher UV-C doses (2000 mJ/cm2). Conversely, incubating contaminated FFR coupons at 65 °C for 30 min or 70 °C for 15 min, was sufficient to block SARS-CoV-2 replication, even in the presence of mucin or a soil load (mimicking salivary or respiratory secretions, respectively). Dry heat (90 min at 75 °C to 80 °C) effectively killed 106 planktonic bacteria; however, even extending the incubation time up to two hours at 80 °C did not completely kill bacteria when grown in colony biofilms. Importantly, we also showed that FFR material can harbor replication-competent SARS-CoV-2 for up to 35 days at room temperature in the presence of a soil load. We are currently using these findings to optimize and establish a robust process for decontaminating, reusing, and reducing wastage of PPE in New Zealand.


Xiaochaihu Decoction Treatment of Chicken Colibacillosis by Improving Pulmonary Inflammation and Systemic Inflammation.

  • Ke Song‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2022‎

Chicken colibacillosis-the most common disease of poultry, is caused mainly by avian pathogenic Escherichia coli (APEC). It has a major impact on the poultry industry worldwide. The present study was conducted to investigate the therapeutic effects of Xiaochaihu Decoction (XCHD) supplementation on clinical manifestation, organ index, bacterial load in organ and inflammatory mediators in a chicken model challenged with APEC. The results showed that all doses of XCHD significantly elevated the survival rate of infected chickens. XCHD improved the clinical signs of infected chickens, reduced the organ index, reduced the bacterial load of organs, and inhibited the secretion of serum and pulmonary inflammatory factors IL-1β, IL-6 and TNF- α. Taken together, this study demonstrates that XCHD had protective effects on APEC-infected chickens. Its mechanism includes anti-inflammatory and antibacterial effects. These findings may contribute to the further study of the mechanism of the formula and the prevention or treatment of colibacillosis in poultry. The significance of this study is that it provides a certain theoretical basis for the replacement of antibiotics by XCHD.


Swine Conjunctivitis Associated with a Novel Mycoplasma Species Closely Related to Mycoplasma hyorhinis.

  • Isabel Hennig-Pauka‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2020‎

Conjunctivitis in swine is a common finding, usually considered to be a secondary symptom of respiratory or viral systemic disease, or a result of irritation by dust or ammonia, or of local infections with Mycoplasma (M.) hyorhinis or chlamydia. In three unrelated swine farms in Germany with a high prevalence of conjunctivitis, a novel mycoplasma species, tentatively named Mycoplasma sp. 1654_15, was isolated from conjunctival swabs taken from affected pigs. Although 16S rRNA gene sequences shared highest nucleotide similarities with M. hyorhinis, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, partial rpoB sequencing, and comparative whole genome analyses indicated the identification of a novel species within genus Mycoplasma. Noticeable differences between Mycoplasma sp. 1654_15 and M. hyorhinis were the lack of a vlp locus and the presence of a myo-inositol pathway in the genome of strain 1654_15. Since myo-inositol might be used as an alternative energy source by this pathogen on the conjunctival surface, robust colonization by outcompeting other bacteria could be the consequence. In summary, abundant isolation of Mycoplasma sp. 1654_15 from the conjunctiva of affected pigs, its close relationship to M. hyorhinis, and identification of a panel of coding sequences (CDSs) potentially associated with virulence and pathogenicity suggested a local eye disease caused by a so far unknown, highly specialized mycoplasma species.


Changes in the Nasal Microbiota of Pigs Following Single or Co-Infection with Porcine Reproductive and Respiratory Syndrome and Swine Influenza A Viruses.

  • Tiphany Chrun‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Host-microbiota interactions are important in shaping immune responses that have the potential to influence the outcome of pathogen infection. However, most studies have focused on the gut microbiota and its possible association with disease outcome, while the role of the nasal microbiota and respiratory pathogen infection has been less well studied. Here we examined changes in the composition of the nasal microbiota of pigs following experimental infection with porcine reproductive and respiratory syndrome virus 2 (PRRSV-2), swine influenza A H3N2 virus (H3N2) or both viruses. DNA extracted from nasal swabs were subjected to 16S rRNA sequencing to study the composition of the nasal microbiota. Bacterial richness fluctuated in all groups, with a slight reduction in pigs singly infected with PRRSV-2 and H3N2 during the first 5 days of infection compared to uninfected controls. In contrast, nasal bacterial richness remained relatively stable after PRRSV-2/H3N2 co-infection. PRRSV-2 and H3N2, alone or in combination differentially altered the abundance and distribution of bacterial families. Single and co-infection with PRRSV-2 or H3N2 was associated with the expansion of the Neisseriaceae family. A positive correlation between H3N2 viral load and the relative abundance of the Neisseriaceae was observed. However, further mechanistic studies are required to understand the significance of the changes in specific bacterial families following these viral infections.


Altered Salivary Microbiome in the Early Stage of HIV Infections among Young Chinese Men Who Have Sex with Men (MSM).

  • Jin Li‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2020‎

Human immunodeficiency virus (HIV) infections are spiking in Chinese young men who have sex with men (MSM). To explore alterations in the salivary microbiome and its correlation with demographic characteristics, CD4+ T cell count and viral load (VL) in HIV infections, samples of unstimulated whole saliva were analyzed by 16S rRNA gene sequencing using the Illumina MiSeq platform in 20 HIV newly infected patients before the initiation of antiretroviral therapy (ART) and at three and six months after, and in 20 age- and gender-paired healthy Chinese people. The results showed that the alpha diversity of salivary microbiota in HIV infections did not show differences from the healthy controls, but was reduced after six months under ART treatment. Comparative analysis revealed that Streptococcus was enriched in HIV-infected individuals, while Neisseria was enriched in the healthy control group. After effective ART, the salivary microbiota composition was not completely restored, although some microbiota recovered. In addition, we found Provotella_7, Neisseria and Haemophilus were correlated negatively with CD4+ T cell count, while Neisseria was correlated positively with VL. We conclude that HIV infections experience a dysbiosis of the salivary microbiome. The salivary microbiome test could be a substitute for the blood tests in the diagnosis and prognosis of diseases.


Teixobactin Provides Protection against Inhalation Anthrax in the Rabbit Model.

  • William S Lawrence‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2020‎

The use of antibiotics is a vital means of treating infections caused by the bacteria Bacillus (B.) anthracis. Importantly, with the potential future use of multidrug-resistant strains of B. anthracis as bioweapons, new antibiotics are needed as alternative therapeutics. In this blinded study, we assessed the protective efficacy of teixobactin, a recently discovered antibiotic, against inhalation anthrax infection in the adult rabbit model. New Zealand White rabbits were infected with a lethal dose of B. anthracis Ames spores via the inhalation route, and blood samples were collected at various times to assess antigenemia, bacteremia, tissue bacterial load, and antibody production. Treatments were administered upon detection of B. anthracis protective antigen in the animals' sera. For comparison, a fully protective dose of levofloxacin was used as a positive control. Rabbits treated with teixobactin showed 100% survival following infection, and the bacteremia was completely resolved by 24-48 h post-treatment. In addition, the bacterial/spore loads in tissues of the animals treated with teixobactin were either zero or dramatically less relative to that of the negative control animals. Moreover, microscopic evaluation of the tissues revealed decreased pathology following treatment with teixobactin. Overall, these results show that teixobactin was protective against inhalation anthrax infection in the rabbit model, and they indicate the potential of teixobactin as a therapeutic for the disease.


Efficacy of Violet-Blue (405 nm) LED Lamps for Disinfection of High-Environmental-Contact Surfaces in Healthcare Facilities: Leading to the Inactivation of Microorganisms and Reduction of MRSA Contamination.

  • Davide Amodeo‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

Effective disinfection procedures in healthcare facilities are essential to prevent transmission. Chemical disinfectants, hydrogen peroxide vapour (HPV) systems and ultraviolet (UV) light are commonly used methods. An emerging method, violet-blue light at 405 nm, has shown promise for surface disinfection. Its antimicrobial properties are based on producing reactive oxygen species (ROS) that lead to the inactivation of pathogens. Studies have shown significant efficacy in reducing bacterial levels on surfaces and in the air, reducing nosocomial infections. The aim of this study was to evaluate the antimicrobial effectiveness of violet-blue (405 nm) LED lamps on high-contact surfaces in a hospital infection-control laboratory. High-contact surfaces were sampled before and after 7 days of exposure to violet-blue light. In addition, the effect of violet-blue light on MRSA-contaminated surfaces was investigated. Exposure to violet-blue light significantly reduced the number of bacteria, yeasts and moulds on the sampled surfaces. The incubator handle showed a low microbial load and no growth after irradiation. The worktable and sink showed an inconsistent reduction due to shaded areas. In the second experiment, violet-blue light significantly reduced the microbial load of MRSA on surfaces, with a greater reduction on steel surfaces than on plastic surfaces. Violet-blue light at 405 nm has proven to be an effective tool for pathogen inactivation in healthcare settings Violet-blue light shows promise as an additional and integrated tool to reduce microbial contamination in hospital environments but must be used in combination with standard cleaning practices and infection control protocols. Further research is needed to optimise the violet-blue, 405 nm disinfection method.


Alpha Enolase 1 Ubiquitination and Degradation Mediated by Ehrlichia chaffeensis TRP120 Disrupts Glycolytic Flux and Promotes Infection.

  • Bing Zhu‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Ehrlichia chaffeensis modulates numerous host cell processes, including gene transcription to promote infection of the mononuclear phagocyte. Modulation of these host cell processes is directed through E. chaffeensis effectors, including TRP120. We previously reported that TRP120 moonlights as a HECT E3 Ub ligase that ubiquitinates host cell transcription and fate regulators (PCGF5 and FBW7) to promote infection. In this study, we identified a novel TRP120 substrate and examined the relationship between TRP120 and α-enolase (ENO1), a metalloenzyme that catalyzes glycolytic pathway substrate dehydration. Immunofluorescence microscopy and coimmunoprecipitation demonstrated interaction between ENO1 and TRP120, and ubiquitination of ENO-1 by TRP120 was detected in vivo and in vitro. Further, ENO-1 degradation was observed during infection and was inhibited by the proteasomal inhibitor bortezomib. A direct role of TRP120 Ub ligase activity in ENO-1 degradation was demonstrated and confirmed by ectopic expression of TRP120 HECT Ub ligase catalytic site mutant. siRNA knockdown of ENO-1 coincided with increased E. chaffeensis infection and ENO-1 knockdown disrupted glycolytic flux by decreasing the levels of pyruvate and lactate that may contribute to changes in host cell metabolism that promote infection. In addition, we elucidated a functional role of TRP120 auto-ubiquitination as an activating event that facilitates the recruitment of the UbcH5 E2 ubiquitin-conjugating enzyme. This investigation further expands the repertoire of TRP120 substrates and extends the potential role of TRP120 Ub ligase in infection to include metabolic reprogramming.


Innovative Elastomers with Antimicrobial Activity May Decrease Infection Risks during Milking.

  • Gabriele Meroni‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

Contagious pathogens are very costly to dairy herds, and they may have zoonotic and reverse-zoonotic potentials and may contribute to the spread of antimicrobial resistance. One of the most important risk factors for spreading these infections is milking, when liner contamination may transfer the pathogens from infected to healthy cows. There is no effective protocol to prevent the transmission of infection without the segregation of infected cows. Recently, the availability of elastomers with patented antimicrobial components in their formulations has allowed the exploration of alternative methods to reduce the risk of infection. Two different types of elastomers (rubber and silicone) and nine different formulations were challenged with three major mastitis pathogens (S. aureus, S. agalactiae, and E. coli). The results that were obtained in this study were interesting and unexpected. Indeed, to our knowledge, this is the first study to show that basic rubber materials have intrinsic antimicrobial activity. Silicone elastomers did not exhibit the same levels of bactericidal activity, although they did exhibit some antibacterial capacity. A significant decrease in bacterial survival curves was observed for all the formulations tested when antimicrobial components were added. The different results observed for the various products are likely due to the different formulations and diverse manufacturing processes. The availability of these new materials that significantly reduce the bacterial load on the liner surface may reduce the risk of spreading intramammary infections during milking. This would be an important step forward in achieving global sustainability of dairy herds, consistent with the objectives of One Health, by reducing the risks of zoonotic diseases and antimicrobial treatments.


Genotyping, Assessment of Virulence and Antibacterial Resistance of the Rostov Strain of Mycobacterium tuberculosis Attributed to the Central Asia Outbreak Clade.

  • Mikhail V Fursov‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2020‎

The Central Asia Outbreak (CAO) clade is a growing public health problem for Central Asian countries. Members of the clade belong to the narrow branch of the Mycobacterium tuberculosis Beijing genotype and are characterized by multidrug resistance and increased transmissibility. The Rostov strain of M. tuberculosis isolated in Russia and attributed to the CAO clade based on PCR-assay and whole genome sequencing and the laboratory strain H37Rv were selected to evaluate the virulence on C57Bl/6 mice models by intravenous injection. All mice infected with the Rostov strain succumbed to death within a 48-day period, while more than half of the mice infected by the H37Rv strain survived within a 90-day period. Mice weight analysis revealed irreversible and severe depletion of animals infected with the Rostov strain compared to H37Rv. The histological investigation of lung and liver tissues of mice on the 30th day after injection of mycobacterial bacilli showed that the pattern of pathological changes generated by two strains were different. Moreover, bacterial load in the liver and lungs was higher for the Rostov strain infection. In conclusion, our data demonstrate that the drug-resistant Rostov strain exhibits a highly virulent phenotype which can be partly explained by the CAO-specific mutations.


Molecular Survey of Hemotropic Mycoplasma spp. and Bartonella spp. in Coatis (Nasua nasua) from Central-Western Brazil.

  • Lívia Perles‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

Even though previous works showed molecular evidence of hemotropic Mycoplasma spp. (hemoplasmas) in ring-tailed coatis (Nasua nasua) from Brazil, Bartonella sp. has not been reported in these mammals so far. The present study aimed to detect the above-mentioned agents in coatis' blood and associated ectoparasites, assessing the association between these infections and red blood parameters. Between March 2018 and January 2019, coati (n = 97) blood samples, Amblyomma sp. ticks (2242 individual ticks, resulting in 265 pools), and Neotrichodectes pallidus louse (n = 59) were collected in forested urban areas from midwestern Brazil. DNA extracted from coatis' blood, and ectoparasite samples were submitted to quantitative PCR (qPCR) (16S rRNA) and conventional PCR (cPCR) (16S rRNA and 23S rRNA) for hemoplasmas and qPCR (nuoG gene) and culturing (only blood) for Bartonella spp. Two different hemoplasma genotypes were detected in blood samples: 71% coatis positive for myc1 and 17% positive for myc2. While 10% of ticks were positive for hemoplasmas (myc1), no louse was positive. The estimated bacterial load of hemoplasmas showed no association with anemia indicators. All coatis were negative for Bartonella sp. in qPCR assay and culturing, albeit two Amblyomma sp. larvae pools, and 2 A. dubitatum nymph pools were positive in the qPCR. The present work showed a high occurrence of hemoplasmas, with two distinct hemoplasma genotypes, in coatis from forested urban areas in midwestern Brazil.


Seroprevalence of Bartonella henselae and Bartonella quintana Infection and Impact of Related Risk Factors in People from Eastern Slovakia.

  • Katarína Petríková‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

The genus Bartonella is a rapidly expanding group of ubiquitous bacteria that occur mainly in different animal species, but some can also be transmitted to humans. Three species, B. henselae, B. bacilliformis, and B. quintana, are responsible for the majority of human cases. The severity of the clinical symptoms often depends on the immune status of the patient, but others factors such as the species of the pathogen, virulence factors, and bacterial load also can play an important role. As the information on the occurrence of bartonellosis in the human population in Slovakia is absent, the aim of our pilot study was to determine the seroprevalence against B. henselae and B. quintana in the population of people living in Eastern Slovakia, and to identify the impact of related risk factors. Of 536 people included in the study, 126 (23.5%) showed positivity for anti-B. henselae antibodies and 133 (24.8%) against B. quintana. A statistically higher prevalence was confirmed only in the case of B. quintana in women regardless of the risk group. In analyzing the risk factors, we found significant differences between B. henselae seropositive and seronegative groups only in uric acid levels and serum creatinine, both, however, clinically irrelevant. Significant, but clinically irrelevant differences were observed also in alanine aminotransferase (ALT) levels and creatinine in people seropositive to B. quintana.


Effects of Naturally Occurring Mutations in Bovine Leukemia Virus 5'-LTR and Tax Gene on Viral Transcriptional Activity.

  • Aneta Pluta‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2020‎

Bovine leukemia virus (BLV) is a deltaretrovirus infecting bovine B cells and causing enzootic bovine leucosis (EBL). The long terminal repeat (LTR) plays an indispensable role in viral gene expression. The BLV Tax protein acts as the main transactivator of LTR-driven transcription of BLV viral genes. The aim of this study was to analyze mutations in the BLV LTR region and tax gene to determine their association with transcriptional activity. LTRs were obtained from one hundred and six BLV isolates and analyzed for their genetic variability. Fifteen variants were selected and characterized based on mutations in LTR regulatory elements, and further used for in vitro transcription assays. Reporter vectors containing the luciferase gene under the control of each variant BLV promoter sequence, in addition to variant Tax expression vectors, were constructed. Both types of plasmids were used for cotransfection of HeLa cells and the level of luciferase activity was measured as a proxy of transcriptional activity. Marked differences in LTR promoter activity and Tax transactivation activity were observed amongst BLV variants. These results demonstrate that mutations in both the BLV LTR and tax gene can affect the promoter activity, which may have important consequences on proviral load, viral fitness, and transmissibility in BLV-infected cattle.


Indian Herb-Derived Phytoconstituent-Based Antiviral, Antimicrobial and Antifungal Formulation: An Oral Rinse Candidate for Oral Hygiene and the Potential Prevention of COVID-19 Outbreaks.

  • Shashwat Sharad‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Outbreaks of emerging infectious diseases continue to challenge human health. Novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has triggered a global coronavirus pandemic, known as COVID-19. Multiple variants of SARS-CoV-2 virus are circulating, thus raising questions with respect to the effectiveness of different lines of treatment, such as vaccines and antiviral drugs. To find the appropriate prevention/treatment, 21 plant-based ingredients (Glycyrrhizin, Withanone, Aloe-emodin, Rhein, Emodin, Chrysophanol, Physcion, Kaempferol, Progallin A, Gallic acid, Naringin, Quercetin, Luteolin, and Apigenin) having antiviral, antibacterial and antifungal properties were identified. We pseudo-typed SARS-CoV-2 on a lentiviral vector plasmid and tested the impact of five different herbal formulations in mammalian HEK293T cells. Viral inactivation assay showed that the natural extracts in a herb-derived phytoconstituent-based formulation, BITS-003, comprising Bacopa monnieri, Glycyerrhiza glabra, Asparagus racemosus-wild, and Nigella sativa had strong virucidal properties, inactivating enveloped viruses from 2log10 (or 99%) to >4log10 (or 99.99%). Moreover, bacterial and yeast cells treated with BITS-003 displayed reduced growth. Topical use of the formulation as a mouthwash/gargle could be effective in reducing symptoms of respiratory viral infections, with the potential to decrease the viral load in the buccal/oral cavity. This may inhibit the coronavirus spreading to the lungs of infected persons and at the same time may reduce the risk of viral transmission to other susceptible persons through micro-droplets originating from the oral cavity of the infected person.


Peripheral Blood Markers Correlate with the Progression of Active Tuberculosis Relative to Latent Control of Mycobacterium tuberculosis Infection in Macaques.

  • Maya Gough‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2022‎

Despite a century of research into tuberculosis (TB), there is a dearth of reproducible, easily quantifiable, biomarkers that can predict disease onset and differentiate between host disease states. Due to the challenges associated with human sampling, nonhuman primates (NHPs) are utilized for recapitulating the closest possible modelling of human TB. To establish a predictive peripheral biomarker profile based on a larger cohort of rhesus macaques (RM), we analyzed results pertaining to peripheral blood serum chemistry and cell counts from RMs that were experimentally exposed to Mtb in our prior studies and characterized as having either developed active TB (ATB) disease or latent TB infection (LTBI). We compared lung CFU burdens and quantitative pathologies with a number of measurables in the peripheral blood. Based on our results, the investigations were then extended to the study of specific molecules and cells in the lung compartments of a subset of these animals and their immune responses. In addition to the elevated serum C-reactive protein (CRP) levels, frequently used to discern the level of Mtb infection in model systems, reduced serum albumin-to-globulin (A/G) ratios were also predictive of active TB disease. Furthermore, higher peripheral myeloid cell levels, particularly those of neutrophils, kynurenine-to-tryptophan ratio, an indicator of induced expression of the immunosuppressive molecule indoleamine dioxygenase, and an influx of myeloid cell populations could also efficiently discriminate between ATB and LTBI in experimentally infected macaques. These quantifiable correlates of disease were then used in conjunction with a regression-based analysis to predict bacterial load. Our results suggest a potential biomarker profile of TB disease in rhesus macaques, that could inform future NHP-TB research. Our results thus suggest that specific biomarkers may be developed from the myeloid subset of peripheral blood or plasma with the ability to discriminate between active and latent Mtb infection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: