2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Experimental Validation of Bacillus anthracis A16R Proteogenomics.

  • Zhiqi Gao‎ et al.
  • Scientific reports‎
  • 2015‎

Anthrax, caused by the pathogenic bacterium Bacillus anthracis, is a zoonosis that causes serious disease and is of significant concern as a biological warfare agent. Validating annotated genes and reannotating misannotated genes are important to understand its biology and mechanisms of pathogenicity. Proteomics studies are, to date, the best method for verifying and improving current annotations. To this end, the proteome of B. anthracis A16R was analyzed via one-dimensional gel electrophoresis followed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). In total, we identified 3,712 proteins, including many regulatory and key functional proteins at relatively low abundance, representing the most complete proteome of B. anthracis to date. Interestingly, eight sequencing errors were detected by proteogenomic analysis and corrected by resequencing. More importantly, three unannotated peptide fragments were identified in this study and validated by synthetic peptide mass spectrum mapping and green fluorescent protein fusion experiments. These data not only give a more comprehensive understanding of B. anthracis A16R but also demonstrate the power of proteomics to improve genome annotations and determine true translational elements.


SpoVG is Necessary for Sporulation in Bacillus anthracis.

  • Meng Chen‎ et al.
  • Microorganisms‎
  • 2020‎

The Bacillus anthracis spore constitutes the infectious form of the bacterium, and sporulation is an important process in the organism's life cycle. Herein, we show that disruption of SpoVG resulted in defective B. anthracis sporulation. Confocal microscopy demonstrated that a ΔspoVG mutant could not form an asymmetric septum, the first morphological change observed during sporulation. Moreover, levels of spoIIE mRNA were reduced in the spoVG mutant, as demonstrated using β-galactosidase activity assays. The effects on sporulation of the ΔspoVG mutation differed in B. anthracis from those in B. subtilis because of the redundant functions of SpoVG and SpoIIB in B. subtilis. SpoVG is highly conserved between B. anthracis and B. subtilis. Conversely, BA4688 (the protein tentatively assigned as SpoIIB in B. anthracis) and B. subtilis SpoIIB (SpoIIBBs) share only 27.9% sequence identity. On complementation of the B. anthracis ΔspoVG strain with spoIIBBs, the resulting strain pBspoIIBBs/ΔspoVG could not form resistant spores, but partially completed the prespore engulfment stage. In agreement with this finding, mRNA levels of the prespore engulfment gene spoIIM were significantly increased in strain pBspoIIBBs/ΔspoVG compared with the ΔspoVG strain. Transcription of the coat development gene cotE was similar in the pBspoIIBBs/ΔspoVG and ΔspoVG strains. Thus, unlike in B. subtilis, SpoVG appears to be required for sporulation in B. anthracis, which provides further insight into the sporulation mechanisms of this pathogen.


Genome sequence of Bacillus anthracis typing phage AP631.

  • Xiankai Liu‎ et al.
  • Archives of virology‎
  • 2019‎

AP631, a virulent bacteriophage of Bacillus anthracis, is widely used in China to identify anthrax bacteria. In this study, we report the complete AP631 phage genome sequence as well as comparative genomic analysis with other bacteriophages of B. cereus and related species. The double-stranded circular DNA genome of phage AP631 was 39,549 bp in length with 35.01% G + C content. The phage genome contained 56 putative protein-coding genes but no rRNA or tRNA genes. Comparative phylogenetic analysis of the phage major capsid proteins and terminase large subunits showed that phage AP631 belongs to the B. cereus sensu lato phage clade II. Comparative genomic analysis revealed a high degree of sequence similarity between phage AP631 and B. anthracis phages Wbeta, Gamma, Cherry, and Fah, as well as three AP631-specific genes bearing no significant similarity to those of other phages.


Highly Efficient Genome Engineering in Bacillus anthracis and Bacillus cereus Using the CRISPR/Cas9 System.

  • Yanchun Wang‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Genome editing is an effective tool for the functional examination of bacterial genes and for live attenuated vaccine construction. Here, we report a method to edit the genomic DNA of Bacillus anthracis and Bacillus cereus using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)9 system. Using two prophages in B. anthracis as targets, large-fragment deletion mutants were achieved with rates of 100 or 20%. In B. cereus, we successfully introduced precise point mutations into plcR, with phenotypic assays showing that the resulting mutants lost hemolytic and phospholipase enzyme activities similar to B. anthracis, which is a natural plcR mutant. Our study indicates that CRISPR/Cas9 is a powerful genetic tool for genome editing in the Bacillus cereus group, and can efficiently modify target genes without the need for residual foreign DNA such as antibiotic selection markers. This system could be developed for use in the generation of marker-free live anthrax vaccines or for safer construction of microbiological candidate-based recombinant B. cereus.


Curing of plasmid pXO1 from Bacillus anthracis using plasmid incompatibility.

  • Xiankai Liu‎ et al.
  • PloS one‎
  • 2012‎

The large plasmid pXO1 encoding the anthrax toxin is important for the virulence of Bacillus anthracis. It is essential to cure pXO1 from B. anthracis to evaluate its role in the pathogenesis of anthrax infection. Because conventional methods for curing plasmids (e.g., curing agents or growth at elevated temperatures) can induce mutations in the host chromosomal DNA, we developed a specific and reliable method to eliminate pXO1 from B. anthracis using plasmid incompatibility. Three putative replication origins of pXO1 were inserted into a temperature-sensitive plasmid to generate three incompatible plasmids. One of the three plasmids successfully eliminated the large plasmid pXO1 from B. anthracis vaccine strain A16R and wild type strain A16. These findings provided additional information about the replication/partitioning of pXO1 and demonstrated that introducing a small incompatible plasmid can generate plasmid-cured strains of B. anthracis without inducing spontaneous mutations in the host chromosome.


Disruption of SpoIIID decreases sporulation, increases extracellular proteolytic activity and virulence in Bacillus anthracis.

  • Yufei Lyu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Endospores are important for maintenance of the B. anthracis lifecycle and necessary for its effective spread between hosts. Our experiments with B. anthracis showed that disruption of SpoIIID results in a spore formation defect, as determined by heat resistance assays and microscopic assessment. We further found complete engulfment by the ΔspoIIID mutant strain by membrane morphology staining but no synthesis of the clarity coat and exosporium by transmission electron microscopy. Reduced transcription and expression of small acid-soluble spore protein(sasP-2) and the spore development associated genes (σK, gerE and cotE) in the mother cell were found in the ΔspoIIID strain, suggesting that the spore formation defect in B. anthracis A16R is related to decreased transcription and expression of these genes. Extracellular protease and virulence enhancement in the ΔspoIIID strain may be related to the elevation of metalloproteinases (TasA and Camelysin) levels. Our findings pave the way for further research on the regulation network of sporulation, survival and virulence in these two morphological forms of B. anthracis.


Rapid Identification of Bacillus anthracis In Silico and On-Site Using Novel Single-Nucleotide Polymorphisms.

  • Yufei Lyu‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Bacillus anthracis is a spore-forming bacterium that causes life-threatening infections in animals and humans and has been used as a bioterror agent. Rapid and reliable detection and identification of B. anthracis are of primary interest for both medical and biological threat-surveillance purposes. Few chromosomal sequences provide enough polymorphisms to clearly distinguish B. anthracis from closely related species. We analyzed 18 loci of the chromosome of B. anthracis and discovered eight novel single-nucleotide polymorphism (SNP) sites that can be used for the specific identification of B. anthracis. Using these SNP sites, we developed software-named AGILE V1.1 (anthracis genome-based identification with high-fidelity E-probe)-for easy, user-friendly identification of B. anthracis from whole-genome sequences. We also developed a recombinase polymerase amplification-Cas12a-based method that uses nucleic acid extracts for the specific, rapid, in-the-field identification of B. anthracis based on these SNPs. Via this method and B. anthracis-specific CRISPR RNAs for the target CR5_2, CR5_1, and Ba813 SNPs, we clearly detected 5 aM genomic DNA. This study provides two simple and reliable methods suitable for use in local hospitals and public health programs for the detection of B. anthracis. IMPORTANCE Bacillus anthracis is the etiologic agent of anthrax, a fatal disease and a potential biothreat. A specific, accurate, and rapid method is urgently required for the identification of B. anthracis. We demonstrate the potential of using eight novel SNPs for the rapid and accurate detection of B. anthracis via in silico and laboratory-based testing methods. Our findings have important implications for public health responses to disease outbreaks and bioterrorism threats.


Identification of the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R.

  • Xiankai Liu‎ et al.
  • PloS one‎
  • 2013‎

Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.


A CRISPR/Cas12a-based DNAzyme visualization system for rapid, non-electrically dependent detection of Bacillus anthracis.

  • Dongshu Wang‎ et al.
  • Emerging microbes & infections‎
  • 2022‎

As next-generation pathogen detection methods, CRISPR-Cas-based detection methods can perform single-nucleotide polymorphism (SNP) level detection with high sensitivity and good specificity. They do not require any particular equipment, which opens up new possibilities for the accurate detection and identification of Bacillus anthracis. In this study, we developed a complete detection system for B. anthracis based on Cas12a. We used two chromosomally located SNP targets and two plasmid targets to identify B. anthracis with high accuracy. The CR5 target is completely new. The entire detection process can be completed within 90 min without electrical power and with single-copy level sensitivity. We also developed an unaided-eye visualization system based on G4-DNAzyme for use with our CRISPR-Cas12a detection system. This visualization system has good prospects for deployment in field-based point-of-care detection. We used the antisense nucleic acid CatG4R as the detection probe, which showed stronger resistance to interference from components of the solution. CatG4R can also be designed as an RNA molecule for adaptation to Cas13a detection, thereby broadening the scope of the detection system.


Application of CRISPR/Cas9 System for Plasmid Elimination and Bacterial Killing of Bacillus cereus Group Strains.

  • Xiaojing Wang‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

The CRISPR-Cas system has been widely applied in prokaryotic genome editing with its high efficiency and easy operation. We constructed some "scissors plasmids" via using the temperature-sensitive pJOE8999 shuttle plasmid, which carry the different 20nt (N20) guiding the Cas9 nuclease as a scissors to break the target DNA. We successfully used scissors plasmids to eliminate native plasmids from Bacillus anthracis and Bacillus cereus, and specifically killed B. anthracis. When curing pXO1 and pXO2 virulence plasmids from B. anthracis A16PI2 and A16Q1, respectively, we found that the plasmid elimination percentage was slightly higher when the sgRNA targeted the replication initiation region (96-100%), rather than the non-replication initiation region (88-92%). We also tried using a mixture of two scissors plasmids to simultaneously eliminate pXO1 and pXO2 plasmids from B. anthracis, and the single and double plasmid-cured rates were 29 and 14%, respectively. To our surprise, when we used the scissor plasmid containing two tandem sgRNAs to cure the target plasmids pXO1 and pXO2 from wild strain B. anthracis A16 simultaneously, only the second sgRNA could guide Cas9 to cleave the target plasmid with high efficiency, while the first sgRNA didn't work in all the experiments we designed. When we used the CRISPR/cas9 system to eliminate the pCE1 mega-virulence plasmid from B. cereus BC307 by simply changing the sgRNA, we also obtained a plasmid-cured isogenic strain at a very high elimination rate (69%). The sterilization efficiency of B. anthracis was about 93%, which is similar to the efficiency of plasmid curing, and there was no significant difference in the efficiency of among the scissors plasmids containing single sgRNA, targeting multi-sites, or single-site targeting and the two tandem sgRNA. This simple and effective curing method, which is applicable to B. cereus group strains, provides a new way to study these bacteria and their virulence profiles.


Genome Sequence and Phenotypic Analysis of a Protein Lysis-Negative, Attenuated Anthrax Vaccine Strain.

  • Lu Yuan‎ et al.
  • Biology‎
  • 2023‎

Bacillus anthracis is a Gram-positive bacterium that causes the zoonotic disease anthrax. Here, we studied the characteristic phenotype and virulence attenuation of the putative No. II vaccine strain, PNO2, which was reportedly introduced from the Pasteur Institute in 1934. Characterization of the strain showed that, compared with the control strain, A16Q1, the attenuated PNO2 (PNO2D1) was phospholipase-positive, with impaired protein hydrolysis and significantly reduced sporulation. Additionally, PNO2D1 significantly extended the survival times of anthrax-challenged mice. An evolutionary tree analysis revealed that PNO2D1 was not a Pasteur strain but was more closely related to a Tsiankovskii strain. A database comparison revealed a seven-base insertion mutation in the nprR gene. Although it did not block nprR transcription, the insertion mutation resulted in the premature termination of protein translation. nprR deletion of A16Q1 resulted in a nonproteolytic phenotype that could not sporulate. The database comparison revealed that the abs gene is also prone to mutation, and the abs promoter activity was much lower in PNO2D1 than in A16Q1. Low abs expression may be an important reason for the decreased virulence of PNO2D1.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: