Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Dynamic morphogenesis of a pioneer axon in Drosophila and its regulation by Abl tyrosine kinase.

  • Akanni Clarke‎ et al.
  • Molecular biology of the cell‎
  • 2020‎

The fundamental problem in axon growth and guidance is to understand how cytoplasmic signaling modulates the cytoskeleton to produce directed growth cone motility. We here dissect this process using live imaging of the TSM1 axon of the developing Drosophila wing. We find that the growth cone is almost purely filopodial, and that it extends by a protrusive mode of growth. Quantitative analysis reveals two separate groups of growth cone properties that together account for growth cone structure and dynamics. The core morphological features of the growth cone are strongly correlated with one another and define two discrete morphs. Genetic manipulation of a critical mediator of axon guidance signaling, Abelson (Abl) tyrosine kinase, shows that while Abl weakly modulates the ratio of the two morphs it does not greatly change their properties. Rather, Abl primarily regulates the second group of properties, which report the organization and distribution of actin in the growth cone and are coupled to growth cone velocity. Other experiments dissect the nature of that regulation of actin organization and how it controls the spatial localization of filopodial dynamics and thus axon extension. Together, these observations suggest a novel, probabilistic mechanism by which Abl biases the stochastic fluctuations of growth cone actin to direct axon growth and guidance.


Abl signaling directs growth of a pioneer axon in Drosophila by shaping the intrinsic fluctuations of actin.

  • Akanni Clarke‎ et al.
  • Molecular biology of the cell‎
  • 2020‎

The fundamental problem in axon growth and guidance is understanding how cytoplasmic signaling modulates the cytoskeleton to produce directed growth cone motility. Live imaging of the TSM1 axon of the developing Drosophila wing has shown that the essential role of the core guidance signaling molecule, Abelson (Abl) tyrosine kinase, is to modulate the organization and spatial localization of actin in the advancing growth cone. Here, we dissect in detail the properties of that actin organization and its consequences for growth cone morphogenesis and motility. We show that advance of the actin mass in the distal axon drives the forward motion of the dynamic filopodial domain that defines the growth cone. We further show that Abl regulates both the width of the actin mass and its internal organization, spatially biasing the intrinsic fluctuations of actin to achieve net advance of the actin, and thus of the dynamic filopodial domain of the growth cone, while maintaining the essential coherence of the actin mass itself. These data suggest a model whereby guidance signaling systematically shapes the intrinsic, stochastic fluctuations of actin in the growth cone to produce axon growth and guidance.


A genome-wide analysis reveals that the Drosophila transcription factor Lola promotes axon growth in part by suppressing expression of the actin nucleation factor Spire.

  • Michael A Gates‎ et al.
  • Neural development‎
  • 2011‎

The phylogenetically conserved transcription factor Lola is essential for many aspects of axon growth and guidance, synapse formation and neural circuit development in Drosophila. To date it has been difficult, however, to obtain an overall view of Lola functions and mechanisms.


The Abl/enabled signaling pathway regulates Golgi architecture in Drosophila photoreceptor neurons.

  • Ramakrishnan Kannan‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

The Golgi apparatus is optimized separately in different tissues for efficient protein trafficking, but we know little of how cell signaling shapes this organelle. We now find that the Abl tyrosine kinase signaling pathway controls the architecture of the Golgi complex in Drosophila photoreceptor (PR) neurons. The Abl effector, Enabled (Ena), selectively labels the cis-Golgi in developing PRs. Overexpression or loss of function of Ena increases the number of cis- and trans-Golgi cisternae per cell, and Ena overexpression also redistributes Golgi to the most basal portion of the cell soma. Loss of Abl or its upstream regulator, the adaptor protein Disabled, lead to the same alterations of Golgi as does overexpression of Ena. The increase in Golgi number in Abl mutants arises in part from increased frequency of Golgi fission events and a decrease in fusions, as revealed by live imaging. Finally, we demonstrate that the effects of Abl signaling on Golgi are mediated via regulation of the actin cytoskeleton. Together, these data reveal a direct link between cell signaling and Golgi architecture. Moreover, they raise the possibility that some of the effects of Abl signaling may arise, in part, from alterations of protein trafficking and secretion.


Control of dendritic morphogenesis by Trio in Drosophila melanogaster.

  • Madhuri Shivalkar‎ et al.
  • PloS one‎
  • 2012‎

Abl tyrosine kinase and its effectors among the Rho family of GTPases each act to control dendritic morphogenesis in Drosophila. It has not been established, however, which of the many GTPase regulators in the cell link these signaling molecules in the dendrite. In axons, the bifunctional guanine exchange factor, Trio, is an essential link between the Abl tyrosine kinase signaling pathway and Rho GTPases, particularly Rac, allowing these systems to act coordinately to control actin organization. In dendritic morphogenesis, however, Abl and Rac have contrary rather than reinforcing effects, raising the question of whether Trio is involved, and if so, whether it acts through Rac, Rho or both. We now find that Trio is expressed in sensory neurons of the Drosophila embryo and regulates their dendritic arborization. trio mutants display a reduction in dendritic branching and increase in average branch length, whereas over-expression of trio has the opposite effect. We further show that it is the Rac GEF domain of Trio, and not its Rho GEF domain that is primarily responsible for the dendritic function of Trio. Thus, Trio shapes the complexity of dendritic arbors and does so in a way that mimics the effects of its target, Rac.


Disabled is a bona fide component of the Abl signaling network.

  • Jeong K Song‎ et al.
  • Development (Cambridge, England)‎
  • 2010‎

Abl is an essential regulator of cell migration and morphogenesis in both vertebrates and invertebrates. It has long been speculated that the adaptor protein Disabled (Dab), which is a key regulator of neuronal migration in the vertebrate brain, might be a component of this signaling pathway, but this idea has been controversial. We now demonstrate that null mutations of Drosophila Dab result in phenotypes that mimic Abl mutant phenotypes, both in axon guidance and epithelial morphogenesis. The Dab mutant interacts genetically with mutations in Abl, and with mutations in the Abl accessory factors trio and enabled (ena). Genetic epistasis tests show that Dab functions upstream of Abl and ena, and, consistent with this, we show that Dab is required for the subcellular localization of these two proteins. We therefore infer that Dab is a bona fide component of the core Abl signaling pathway in Drosophila.


Molecular separation of two signaling pathways for the receptor, Notch.

  • Maude Le Gall‎ et al.
  • Developmental biology‎
  • 2008‎

Notch is required for many aspects of cell fate specification and morphogenesis during development, including neurogenesis and axon guidance. We here provide genetic and biochemical evidence that Notch directs axon growth and guidance in Drosophila via a "non-canonical", i.e. non-Su(H)-mediated, signaling pathway, characterized by association with the adaptor protein, Disabled, and Trio, an accessory factor of the Abl tyrosine kinase. We find that forms of Notch lacking the binding sites for its canonical effector, Su(H), are nearly inactive for the cell fate function of the receptor, but largely or fully active in axon patterning. Conversely, deletion from Notch of the binding site for Disabled impairs its action in axon patterning without disturbing cell fate control. Finally, we show by co-immunoprecipitation that Notch protein is physically associated in vivo with both Disabled and Trio. Together, these data provide evidence for an alternate Notch signaling pathway that mediates a postmitotic, morphogenetic function of the receptor.


Enabled primarily controls filopodial morphology, not actin organization, in the TSM1 growth cone in Drosophila.

  • Hsiao Yu Fang‎ et al.
  • Molecular biology of the cell‎
  • 2023‎

Ena/VASP proteins are processive actin polymerases that are required throughout animal phylogeny for many morphogenetic processes, including axon growth and guidance. Here we use in vivo live imaging of morphology and actin distribution to determine the role of Ena in promoting the growth of the TSM1 axon of the Drosophila wing. Altering Ena activity causes stalling and misrouting of TSM1. Our data show that Ena has a substantial impact on filopodial morphology in this growth cone but exerts only modest effects on actin distribution. This is in contrast to the main regulator of Ena, Abl tyrosine kinase, which was shown previously to have profound effects on actin and only mild effects on TSM1 growth cone morphology. We interpret these data as suggesting that the primary role of Ena in this axon may be to link actin to the morphogenetic processes of the plasma membrane, rather than to regulate actin organization itself. These data also suggest that a key role of Ena, acting downstream of Abl, may be to maintain consistent organization and reliable evolution of growth cone structure, even as Abl activity varies in response to guidance cues in the environment.


Computational simulations reveal that Abl activity controls cohesiveness of actin networks in growth cones.

  • Aravind Chandrasekaran‎ et al.
  • Molecular biology of the cell‎
  • 2022‎

Extensive studies of growing axons have revealed many individual components and protein interactions that guide neuronal morphogenesis. Despite this, however, we lack any clear picture of the emergent mechanism by which this nanometer-scale biochemistry generates the multimicron-scale morphology and cell biology of axon growth and guidance in vivo. To address this, we studied the downstream effects of the Abl signaling pathway using a computer simulation software (MEDYAN) that accounts for mechanochemical dynamics of active polymers. Previous studies implicate two Abl effectors, Arp2/3 and Enabled, in Abl-dependent axon guidance decisions. We now find that Abl alters actin architecture primarily by activating Arp2/3, while Enabled plays a more limited role. Our simulations show that simulations mimicking modest levels of Abl activity bear striking similarity to actin profiles obtained experimentally from live imaging of actin in wild-type axons in vivo. Using a graph theoretical filament-filament contact analysis, moreover, we find that networks mimicking hyperactivity of Abl (enhanced Arp2/3) are fragmented into smaller domains of actin that interact weakly with each other, consistent with the pattern of actin fragmentation observed upon Abl overexpression in vivo. Two perturbative simulations further confirm that high-Arp2/3 actin networks are mechanically disconnected and fail to mount a cohesive response to perturbation. Taken together, these data provide a molecular-level picture of how the large-scale organization of the axonal cytoskeleton arises from the biophysics of actin networks.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: