Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 111 papers

The EGFR-ZNF263 signaling axis silences SIX3 in glioblastoma epigenetically.

  • Zhibin Yu‎ et al.
  • Oncogene‎
  • 2020‎

The homeotic protein SIX3 is a transcription factor vital for neurogenesis and has a bivalent promoter. We previously showed that SIX3 can be transcriptionally silenced by DNA hypermethylation, functions as a tumor suppressor gene, and inhibits human glioblastoma transcriptionally. Here, we show that the activation of epidermal growth factor (EGFR) induces DNA methylation of SIX3 promoter through the MAPK pathway. ERK, when activated, binds with ZNF263, consequently abrogating the ubiquitination of ZNF263 and leading to its stabilization. ZNF263 binds to the core promoter region of SIX3 and recruits the KAP1/HATS/DNMT corepressor complex to induce transcriptional silencing of SIX3 through H3K27me3 and methylation of SIX3 promoter. Activation of the EGFR-ZNF263 signaling axis in phenotypically normal astrocytes or glioblastoma cells triggers or enhances tumorigenic activities, while elevated expression of the EGFR-ZNF263 signaling components in glioblastoma tissues is associated with poor prognosis of the patients. Together, our findings demonstrate that epigenetic silencing of SIX3 is controlled by a sophisticated and highly ordered oncogenic signaling pathway and therefore provide new insights into initiation and progression of glioblastoma.


LMP1-miR-146a-CXCR4 axis regulates cell proliferation, apoptosis and metastasis.

  • Weiwen Wang‎ et al.
  • Virus research‎
  • 2019‎

Epstein-Barr virus (EBV), the first human tumor virus to have been discovered, sustains an asymptomatic lifelong infection in ∼95% of the world's population. Reportedly, EBV infection induces the expression of specific cellular microRNAs (miRNAs), such as miR-155, miR-146a, miR-21, which can contribute to the persistence of latently infected cells. In this study, we investigated whether C-X-C chemokine receptor type 4 (CXCR4) is a cellular target of human miR-146a. We also investigated the role of miR-146a and CXCR4 in EBV-associated cells. The results indicate that miR-146a is more abundantly expressed in EBV-positive than in EBV-negative cells. MiR-146a down-regulated CXCR4 expression in a dose- and time-dependent manner. Phenotypic experiments detected miR-146a mimics that could suppress cell proliferation and cell migration and promote cell apoptosis by targeting CXCR4. In addition, miR-146a mimics suppressed cell survival by decreasing the population of G0/G1 phase cells. Latent membrane protein (LMP)1, an importance oncoprotein, can stimulate miR-146a and inhibit the CXCR4 expression. Our findings indicate that LMP1-miR-146a-CXCR4 axis functions as a regulator in the EBV-associated cells.


Activation of MAT2A-RIP1 signaling axis reprograms monocytes in gastric cancer.

  • Yan Zhang‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2021‎

The activation of tumor-associated macrophages (TAMs) facilitates the progression of gastric cancer (GC). Cell metabolism reprogramming has been shown to play a vital role in the polarization of TAMs. However, the role of methionine metabolism in function of TAMs remains to be explored.


LMP1 Induces p53 Protein Expression via the H19/miR-675-5p Axis.

  • Jun Li‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Epstein-Barr virus (EBV), a ubiquitous oncogenic herpesvirus, infects more than 90% of the adult population worldwide. The long noncoding RNA H19 is downregulated in EBV-positive gastric cancer (EBVaGC) and nasopharyngeal cancer (NPC). In this study, we found that loss of H19 is caused by hypermethylation status of the H19 promoter in EBV-positive GC and NPC cell lines. Furthermore, latent membrane protein 1 (LMP1), encoded by EBV, induced H19 promoter hypermethylation and deregulated the expression of H19 by upregulating DNMT1 expression. Transwell assays showed that H19 promoted cell migration. Furthermore, H19 promoted cell proliferation and inhibited apoptosis in CCK-8 and flow cytometry assays, respectively. p53, a well-known tumor suppressor, was upregulated in EBVaGC and NPC cell lines. miR-675-5p derived from H19 inhibited p53 protein expression by targeting the 3' untranslated region of the gene. Overall, we found that LMP1 induced p53 protein expression via the H19/miR-675-5p axis in EBVaGC and NPC. LMP1 induced H19 promoter hypermethylation, which repressed the expression of H19 and miR-675-5p and caused p53 protein overexpression in EBVaGC and NPC cells. IMPORTANCE Epstein-Barr virus (EBV) is the first virus to be known to have direct association with human cancer and to be considered as an important DNA tumor virus. The EBV life cycle consists of both latent and lytic modes of infection in B lymphocytes and epithelial cells. The persistence of EBV genomes in malignant cells promoted cell growth. p53, acting as a critical gatekeeper tumor suppressor, is involved in multiple virus-mediated tumorigeneses. Overexpression of p53 inhibits the ability of BZLF1 (EBV-encoded immediate early gene) to disrupt viral latency. In our study, we found LMP1 induces H19 promoter hypermethylation, which represses the expression of H19 and miR-675-5p and results in p53 protein overexpression in EBVaGC and NPC cells. These observations suggest a new mechanism of aberrant expression of p53 by LMP1, which facilitates EBV latency.


Novel Epigenetic CREB-miR-630 Signaling Axis Regulates Radiosensitivity in Colorectal Cancer.

  • Yan Zhang‎ et al.
  • PloS one‎
  • 2015‎

miR-630 has been reported to be a modulator of several cancers, but the mechanism by which is it influences radioresistance remains unknown. We aimed to identify the molecular function of miR-630 and its regulatory mechanism in colorectal cancer (CRC) cell lines.


Cdon suppresses vascular smooth muscle calcification via repression of the Wnt/Runx2 Axis.

  • Byeong-Yun Ahn‎ et al.
  • Experimental & molecular medicine‎
  • 2023‎

Osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) is a risk factor associated with vascular diseases. Wnt signaling is one of the major mechanisms implicated in the osteogenic conversion of VSMCs. Since Cdon has a negative effect on Wnt signaling in distinct cellular processes, we sought to investigate the role of Cdon in vascular calcification. The expression of Cdon was significantly downregulated in VSMCs of the aortas of patients with atherosclerosis and aortic stenosis. Consistently, calcification models, including vitamin D3 (VD3)-injected mice and VSMCs cultured with calcifying media, exhibited reduced Cdon expression. Cdon ablation mice (cKO) exhibited exacerbated aortic stiffness and calcification in response to VD3 compared to the controls. Cdon depletion induced the osteogenic conversion of VSMCs accompanied by cellular senescence. The Cdon-deficient aortas showed a significant alteration in gene expression related to cell proliferation and differentiation together with Wnt signaling regulators. Consistently, Cdon depletion or overexpression in VSMCs elevated or attenuated Wnt-reporter activities, respectively. The deletion mutant of the second immunoglobulin domain (Ig2) in the Cdon ectodomain failed to suppress Wnt signaling and osteogenic conversion of VSMCs. Furthermore, treatment with purified recombinant proteins of the entire ectodomain or Ig2 domain of Cdon displayed suppressive effects on Wnt signaling and VSMC calcification. Our results demonstrate a protective role of Cdon in VSMC calcification by suppressing Wnt signaling. The Ig2 domain of Cdon has the potential as a therapeutic tool to prevent vascular calcification.


CD24-Siglec axis is an innate immune checkpoint against metaflammation and metabolic disorder.

  • Xu Wang‎ et al.
  • Cell metabolism‎
  • 2022‎

The molecular interactions that regulate chronic inflammation underlying metabolic disease remain largely unknown. Since the CD24-Siglec interaction regulates inflammatory response to danger-associated molecular patterns (DAMPs), we have generated multiple mouse strains with single or combined mutations of Cd24 or Siglec genes to explore the role of the CD24-Siglec interaction in metaflammation and metabolic disorder. Here, we report that the CD24-Siglec-E axis, but not other Siglecs, is a key suppressor of obesity-related metabolic dysfunction. Inactivation of the CD24-Siglec-E pathway exacerbates, while CD24Fc treatment alleviates, diet-induced metabolic disorders, including obesity, dyslipidemia, insulin resistance, and nonalcoholic steatohepatitis (NASH). Mechanistically, sialylation-dependent recognition of CD24 by Siglec-E induces SHP-1 recruitment and represses metaflammation to protect against metabolic syndrome. A first-in-human study of CD24Fc (NCT02650895) supports the significance of this pathway in human lipid metabolism and inflammation. These findings identify the CD24-Siglec-E axis as an innate immune checkpoint against metaflammation and metabolic disorder and suggest a promising therapeutic target for metabolic disease.


LINC01354/microRNA-216b/KRAS Axis Promotes the Occurrence and Metastasis of Endometrial Cancer.

  • Yan Zhang‎ et al.
  • Nanoscale research letters‎
  • 2022‎

LINC01354 has been defined as a tumor driver in several cancers. Nevertheless, whether LINC01354 involves in endometrial cancer (EC) has been little navigated. Thus, the mechanism of LINC01354 was explored in the disease.


Low Temperature Plasma Suppresses Lung Cancer Cells Growth via VEGF/VEGFR2/RAS/ERK Axis.

  • Yuanyuan Zhou‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Low temperature plasma (LTP) is a promising cancer therapy in clinical practice. In this study, dielectric barrier discharge plasma with helium gas was used to generate LTP. Significant increases in extracellular and intracellular reactive species were found in lung cancer cells (CALU-1 and SPC-A1) after LTP treatments. Cells viability and apoptosis assays demonstrated that LTP inhibited cells viability and induced cells death, respectively. Moreover, Western blotting revealed that the growth of CALU-1 cells was suppressed by LTP via the VEGF/VEGFR2/RAS/ERK axis for the first time. The results showed that LTP-induced ROS and RNS could inhibit the growth of lung cancer cells via VEGF/VEGFR2/RAS/ERK axis. These findings advance our understanding of the inhibitory mechanism of LTP on lung cancer and will facilitate its clinical application.


Knockdown of MALAT1 inhibits osteosarcoma progression via regulating the miR‑34a/cyclin D1 axis.

  • Guangchao Duan‎ et al.
  • International journal of oncology‎
  • 2019‎

Long non‑coding (lnc)RNAs have been demonstrated to be involved in the development of various types of cancers, such as osteosarcoma (OS). Long non‑coding (lnc)RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) expression was reported to be highly expressed in OS and promoted the development of this disease; however, the underlying molecular mechanism by which MALAT1 promotes the progression of OS requires further investigation. In the present study, the expression of MALAT1 and miR‑34a was detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The abundance of cyclin D1 (CCND1) was detected by RT‑qPCR and western blotting. Cell viability, migration and invasion were examined by MTT and Transwell assays. The interaction between miR‑34a and MALAT1 or CCND1 was probed by a dual luciferase reporter assay and RNA immunoprecipitation. Xenograft tumor assay was performed to verify the roles of MALAT1 and miR‑34a in tumor growth in vivo. The results demonstrated that MALAT1 and CCND1 mRNA expression levels were upregulated and miR‑34a was downregulated in OS tissues and cells. Additionally, MALAT1 expression was correlated with tumor size, clinical stage and distant metastasis in patients with OS. In addition, MALAT1 promoted OS cell viability, invasion and migration, while MALAT1 silencing exhibited opposing effects. Moreover, MALAT1 functioned as a ceRNA to suppress miR‑34a expression and in turn upregulate CCND1 in OS cells. Rescue experiments further demonstrated that MALAT1 knockdown partially reversed anti‑miR‑34a‑mediated promotion on OS cell viability, migration and invasion; overexpression of CCND1 partially reversed the effects of MALAT1 silencing on OS progression. Furthermore, in vivo experiments also revealed that MALAT1 promoted OS tumor growth via miR‑34a inhibition and upregulating the expression of CCND1. In conclusion, the present study suggested that MALAT1 exerted its oncogenic function in OS by regulating the miR‑34a/CCND1 axis in OS, which may provide novel insight into the diagnosis and therapy for OS.


E6 hijacks KDM5C/lnc_000231/miR-497-5p/CCNE1 axis to promote cervical cancer progression.

  • Yan Zhang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Emerging evidence suggests that long non-coding RNA (lncRNA) plays an important role in disease development, particularly in cancers. Recent studies with genome-wide sequencing on cervical squamous cell carcinoma and matched adjacent non-tumour tissues showed that a newly identified lncRNA-lnc_000231 was highly expressed in cervical cancers. However, the underlying mechanism through which it is activated and its role in cervical cancer progression is still unclear. In this study, first, we confirmed that lnc_000231 is up-regulated in cervical cancer cells and tumour tissues. Mechanically, we demonstrated that E6 up-regulates lnc_000231 expression through promoting its promoter region H3K4me3 modification by destabilizing KDM5C. In vitro and in vivo results showed that lnc_000231 promotes cervical cancer cell proliferation and tumour formation by acting as miR-497-5p sponge and maintaining cyclin E1 (CCNE1) expression. Thus, our studies identified a new signalling pathway through which E6 promotes cervical cancer progression. E6 hijacked KDM5C/lnc_000231/miR-497-5p/CCNE1 signalling pathway is a promising target for cervical cancer treatment in the future.


mtDNA-STING Axis Mediates Microglial Polarization via IRF3/NF-κB Signaling After Ischemic Stroke.

  • Lingqi Kong‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Neuroinflammation is initiated in response to ischemic stroke, and is usually characterized by microglial activation and polarization. Stimulator of interferon genes (STING) has been shown to play a critical role in anti-tumor immunity and inflammatory diseases. Nevertheless, the effect and underlying mechanisms of STING on microglial polarization after ischemic stroke remain unclarified. In this study, acute ischemic stroke was simulated using a model of middle cerebral artery occlusion (MCAO) at adult male C57BL/6 mice in vivo and the BV2 microglia oxygen-glucose deprivation/reperfusion (OGD/R) model in vitro. The specific STING inhibitor C-176 was administered intraperitoneally at 30min after MCAO. We found that the expression of microglial STING was increased following MCAO and OGD/R. Pharmacologic inhibition of STING with C-176 reduced the ischemia/reperfusion (I/R)-induced brain infarction, edema and neuronal injury. Moreover, blockade of STING improved neurological performance and cognitive function and attenuated neuronal degeneration in the hippocampus after MCAO. Mechanistically, both in vivo and in vitro, we delineated that STING could promote the polarization of microglia towards the M1 phenotype and restrain M2 microglia polarization via downstream pathways, including interferon regulatory factor 3 (IRF3) and nuclear factor-κB (NF-κB). In addition, mitochondrial DNA (mtDNA), which is released to microglial cytoplasm induced by I/R injury, could facilitate microglia towards M1 modality through STING signaling pathway. Treatment with C-176 abolished the detrimental effects of mtDNA on stroke outcomes. Taken together, these findings suggest that STING, activated by mtDNA, could polarize microglia to the M1 phenotype following MCAO. Inhibition of STING may serve as a potential therapeutic strategy to mitigate neuroinflammation after ischemic stroke.


LINC01089 suppresses lung adenocarcinoma cell proliferation and migration via miR-301b-3p/STARD13 axis.

  • Ye Qian‎ et al.
  • BMC pulmonary medicine‎
  • 2021‎

Lung adenocarcinoma (LUAD) is one of the most common cancers with high morbidity and mortality worldwide. Long non-coding RNAs (lncRNAs) serve as tumor promoters or suppressors in the development of various human malignancies, including LUAD. Although long intergenic non-protein coding RNA 1089 (LINC01089) suppresses the progression of breast cancer, its mechanism in LUAD requires further exploration. Thus, we aimed to investigate the underlying function and mechanism of LINC01089 in LUAD.


CircTMTC1 contributes to nasopharyngeal carcinoma progression through targeting miR-495-MET-eIF4G1 translational regulation axis.

  • Yajie Zhao‎ et al.
  • Cell death & disease‎
  • 2022‎

Nasopharyngeal carcinoma (NPC) is the most common primary malignancy arising from the epithelial cells of nasopharynx. CircTMTC1 is upregulated in NPC patients, but its role and molecular mechanism in NPC are unknown. Normal nasopharyngeal epithelium and tumor tissues were collected. The expression of circTMTC1, miR-495, MET/eIF4G1 pathway-related molecules were examined. Colony formation and transwell assays were used to assess cell proliferation, migration, and invasion. Cell apoptosis was analyzed by annexin V and propidium iodide (PI) staining. Gene interaction was examined by RNA immunoprecipitation (RIP) and luciferase activity assays. Subcutaneous and intravenous xenograft mouse models were established to analyze NPC growth and metastasis in vivo. CircTMTC1 was highly expressed and miR-495 was downregulated in NPC, which were associated with poor prognosis of NPC. Both circTMTC1 knockdown and miR-495 overexpression inhibited NPC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) and promoted cell apoptosis. CircTMTC1 directly targeted miR-495 to promote the expression of its downstream target gene MET. miR-495 knockdown enhanced the expression of c-Myc, Cyclin D1, and survivin and accelerated NPC cell proliferation, migration, invasion, and EMT through targeting MET and activating the MET-eIF4G1 axis. CircTMTC1 silence inhibited NPC growth and lung metastasis by targeting the miR-495-MET-eIF4G1 translational regulation axis in vivo. CircTMTC1 accelerates NPC progression through targeting miR-495 and consequently activating the MET-eIF4G1 translational regulation axis, suggesting potential therapeutic targets for NPC treatment.


The Th17 immune response is controlled by the Rel-RORγ-RORγ T transcriptional axis.

  • Qingguo Ruan‎ et al.
  • The Journal of experimental medicine‎
  • 2011‎

The Th17 cells use the retinoid-related orphan receptor-γ (Rorg or Rorc) to specify their differentiation and lineage-specific function. However, how Rorg is switched on during Th17 differentiation is unknown. We report here that c-Rel and RelA/p65 transcription factors drive Th17 differentiation by binding to and activating two distinct Rorg promoters that control RORγT and RORγ expression, respectively. Similar to RORγT, RORγ is selectively expressed in Th17 cells and is effective in specifying the Th17 phenotype. T cells deficient in c-Rel or RelA are significantly compromised in Th17 differentiation, and c-Rel-deficient mice are defective in Th17 responses. Thus, Th17 immunity is controlled by a Rel-RORγ-RORγT axis, and strategies targeting Rel/NF-κB can be effective for controlling Th17 cell-mediated diseases.


Transcription factor PAX4 facilitates gastric cancer progression through interacting with miR-27b-3p/Grb2 axis.

  • Yan Zhang‎ et al.
  • Aging‎
  • 2021‎

Gastric cancer (GC) is one of the most common aggressive cancers. The discovery of an effective biomarker is necessary for GC diagnosis. In this study, we confirmed that Paired box gene 4 (PAX4) is up-regulated in GC tissues and cells via quantitative real time polymerase chain reaction (qRT-PCR), western blot and immunohistochemical staining. It was also identified that PAX4 contributed to GC cell proliferation, migration and invasion through Cell Counting Kit-8, BrdU, flow cytometry assay, colony formation assay, transwell assays, and wound healing assay. miR-27b-3p was confirmed with the binding site with PAX4 using ChIP assay and served as a tumor suppressor that inhibiting GC cell growth and metastasis, and reversed the effect of PAX4. Bioinformatics prediction and dual luciferase assay results demonstrated that miR-27b-3p targeted Grb2, which could alter the function of miR-27b-3p. Furthermore, the transcriptional control of PAX4-regulated miR-27b-3p activated the Ras-ERK pathway. Taken together, the PAX4/miR-27b-3p/Grb2 loop is known to be involved in GC cell promotion, and can be seen as a promising target for GC therapy.


JMJD3 promotes the epithelial-mesenchymal transition and migration of glioma cells via the CXCL12/CXCR4 axis.

  • Shuang Zou‎ et al.
  • Oncology letters‎
  • 2019‎

Histone H3K27 demethylase Jumonji domain-containing protein 3 (JMJD3) is involved in somatic cell differentiation and tumor progression; however, the underlying mechanisms of JMJD3 in cancer progression are yet to be fully explored. To improve understanding regarding the function of JMJD3 in brain tumor cells, the present study investigated the effects of JMJD3 on the epithelial-mesenchymal transition (EMT) and migration in glioma cells, and the underlying mechanisms involving the C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif chemokine receptor 4 (CXCR4) axis. Immunohistochemical staining of a tissue microarray of glioma samples confirmed that JMJD3 overexpression could stratify highly metastatic glioma. The overexpression of JMJD3 induced a spindle-shaped morphology, promoted N-cadherin expression, inhibited E-cadherin expression and enhanced the migration ability of U-251MG and U-87MG American Type Culture Collection cells. The expression of E-cadherin and N-cadherin were assessed by western blotting and reverse transcription-quantitative polymerase chain reaction, and cell migration was evaluated using a Transwell migration assay and wound-healing. The overexpression of JMJD3 upregulated CXCL12 expression in a demethylase activity-dependent manner as ChIP assays revealed a decrease in H3K27 trimethylation at the CXCL12 promoter following overexpression of JMJD3 in U-87MG ATCC cells. Accordingly, CXCL12 overexpression was sufficient to rescue the suppressive effects of JMJD3 inhibition on the EMT and migration in glioma cells. In addition, CXCR4 expression was not regulated by JMJD3, but the interruption of CXCR4 caused by the CXCR4 inhibitor AMD3100 abolished the promotional effect of JMJD3 on EMT and migration in glioma cells. Collectively, these results suggested that JMJD3 promoted EMT and migration in glioma cells via the CXCL12/CXCR4 axis. The present study described a novel epigenetic mechanism regulating tumor cell EMT and migration, and provided a novel direction for glioma diagnosis and treatment.


Upregulated neuregulin-1 protects against optic nerve injury by regulating the RhoA/cofilin/F-actin axis.

  • Qian Hao‎ et al.
  • Life sciences‎
  • 2021‎

In recent years, the roles of Neuregulin-1 (NRG-1) in optic nerve injury and retinal cells have been investigated. However, the molecular mechanism by which NRG-1 affects optic nerve injury remains elusive and merits deeper exploration. Hence, this study examined the specific function of NRG-1 in the RhoA/cofilin/F-actin axis in optic nerve injury.


SIRT1 induces the accumulation of TAMs at colorectal cancer tumor sites via the CXCR4/CXCL12 axis.

  • Hongsheng Fang‎ et al.
  • Cellular immunology‎
  • 2022‎

Our previous work suggested that high SIRT1 expression by cancer cells predicted a poor colorectal cancer (CRC) prognosis, but its role in the tumor microenvironment was unclear. Here, we examined tumor-infiltrating lymphocytes (TILs) in CRC expressing different levels of SIRT1. We also established a co-culture system with monocytes, CD8+ T cells and patient-derived tumor organoids (PDOs) to study the relationships between immune cells and cancer cells. The percentage of CD8+ T cells was decreased and the percentage of macrophages was increased in SIRT1-high (SIRT1-hi) CRC. Co-culture results showed that tumor-associated macrophages (TAMs) from SIRT1-hi CRC inhibited the proliferation and anti-tumor activity of CD8+ T cells. Importantly, SIRT1-hi CRC were shown to modulate the migration and the activity of TAMs. RNA sequencing revealed that CD14+ monocytes in SIRT1-hi patients expressed higher levels of CXCR4. Mechanistically, SIRT1 expression was shown to promote CXCL12 expression by inhibiting the acetylation of p53. Our findings indicate that SIRT1 in CRC induces TAM migration through the CXCR4/CXCL12 pathway, and inhibits the proliferation and activity of CD8+ T cells, resulting in promotion of CRC progression.


Anti-inflammatory effects of Chaishi Tuire Granules on influenza A treatment by mediating TRAF6/MAPK14 axis.

  • Lili Wang‎ et al.
  • Frontiers in medicine‎
  • 2022‎

Influenza is an infectious respiratory disease that can cause severe inflammatory reactions and threaten human life. Chaishi Tuire Granules (CSTRG), a Chinese patent medicine widely used clinically in the treatment of respiratory diseases in China, has a definite anti-inflammatory effect. However, the mechanism of CSTRG in the treatment of influenza is still unclear. This study aimed to demonstrate the anti-inflammatory effect of CSTRG on influenza A treatment and potential mechanisms.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: