Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 76 papers

Mapping of brain tissue hematocrit in glioma and acute stroke using a dual autoradiography approach.

  • A Broisat‎ et al.
  • Scientific reports‎
  • 2018‎

Hematocrit (Hct) determines the ability of blood to carry oxygen. While changes in systemic Hct are known to impact stroke or tumor control, changes in local (tissue) Hct (tHct) induced by these diseases have however received little attention. In this study, we evaluate tHct in acute stroke and in glioma models using a new approach to map tHct across the brain, a dual isotope autoradiography, based on injections of 125I-labeled albumin and 99mTc-lalbeled red blood cells in the same animal. For validation purpose, tHct was mapped in the rat brain (i) under physiological conditions, (ii) following erythropoietin injection, and (iii) following hemodilution. Then, tHct was then mapped in stroke (middle cerebral artery occlusion) and tumor models (9LGS and C6). The mean tHct values observed in healthy brains (tHct = 29 ± 1.3%), were modified as expected by erythropoietin (tHct = 36.7 ± 2.6%) and hemodilution (tHct = 24.2 ± 2.4%). Using the proposed method, we observed a local reduction, spatially heterogeneous, in tHct following acute stroke (tHct = 19.5 ± 2.5%) and in both glioma models (9LGS: tHct = 18.5 ± 2.3%, C6: tHct = 16.1 ± 1.2%). This reduction and this heterogeneity in tHct observed in stroke and glioma raises methodological issues in perfusion imaging techniques where tHct is generally overlooked and could impact therapeutic strategies.


[18F]-sodium fluoride autoradiography imaging of nephrocalcinosis in donor kidneys and explanted kidney allografts.

  • Stan Benjamens‎ et al.
  • Scientific reports‎
  • 2021‎

Nephrocalcinosis is present in up to 43% of kidney allograft biopsies at one-year after transplantation and is associated with inferior graft function and poor graft survival. We studied [18F]-sodium fluoride ([18F]-NaF) imaging of microcalcifications in donor kidneys (n = 7) and explanted kidney allografts (n = 13). Three µm paraffin-embedded serial sections were used for histological evaluation of calcification (Alizarin Red; Von Kossa staining) and ex-vivo [18F]-NaF autoradiography. The images were fused to evaluate if microcalcification areas corresponded with [18F]-NaF uptake areas. Based on histological analyses, tubulointerstitial and glomerular microcalcifications were present in 19/20 and 7/20 samples, respectively. Using autoradiography, [18F]-NaF uptake was found in 19/20 samples, with significantly more tracer activity in kidney allograft compared to deceased donor kidney samples (p = 0.019). Alizarin Red staining of active microcalcifications demonstrated good correlation (Spearman's rho of 0.81, p < 0.001) and Von Kossa staining of consolidated calcifications demonstrated significant but weak correlation (0.62, p = 0.003) with [18F]-NaF activity. This correlation between ex-vivo [18F]-NaF uptake and histology-proven microcalcifications, is the first step towards an imaging method to identify microcalcifications in active nephrocalcinosis. This may lead to better understanding of the etiology of microcalcifications and its impact on kidney transplant function.


Cortical laminar tau deposits and activated astrocytes in Alzheimer's disease visualised by 3H-THK5117 and 3H-deprenyl autoradiography.

  • Laetitia Lemoine‎ et al.
  • Scientific reports‎
  • 2017‎

Hyperphosphorylated tau protein deposits and, inflammatory processes are characteristic components of Alzheimer disease (AD) pathology. We here aimed to visualize in vitro the distribution of tau deposits and activated astrocytes across the cortical layers in autopsy AD brain tissue using the radiotracers 3H-THK5117 and 3H-deprenyl. 3H-THK5117 and 3H-deprenyl autoradiographies were carried out on frozen brain sections from three AD patients and one healthy control. 3H-THK5117 showed a distinct laminar cortical binding similar to 3H-deprenyl autoradiography, with an extensive binding in the superficial and deep layers of the temporal neocortices, whereas the middle frontal gyrus showed an even binding throughout the layers. Globally, eventhough some differences could be observed, AT8 (tau) and GFAP (astrocyte) immunostaining showed a laminar pattern comparable to their corresponding radiotracers within each AD case. Some variability was observed between the AD cases reflecting differences in disease phenotype. The similar laminar cortical brain distribution of tau deposits and activated astrocytes supports the hypothesis of a close pathological interconnection. The difference in regional binding patterns of 3H-THK5117 and AT8 antibody staining suggest additional tau binding sites detectable by 3H-THK5117.


Orexin 2 receptor (OX2R) protein distribution measured by autoradiography using radiolabeled OX2R-selective antagonist EMPA in rodent brain and peripheral tissues.

  • Kayo Mitsukawa‎ et al.
  • Scientific reports‎
  • 2022‎

Orexin, a neuropeptide, performs various physiological functions, including the regulation of emotion, feeding, metabolism, respiration, and sleep/wakefulness, by activating the orexin 1 receptor and orexin 2 receptor (OX2R). Owing to the pivotal role of OX2R in wakefulness and other biological functions, OX2R agonists are being developed. A detailed understanding of OX2R protein distribution is essential for determining the mechanisms of action of OX2R agonists; however, this has been hindered by the lack of selective antibodies. In this study, we first confirmed the OX2R-selective binding of [3H]-EMPA in in vitro autoradiography studies, using brain slices from OX2R knockout mice and their wild-type littermates. Subsequently, OX2R protein distribution in rats was comprehensively assessed in 51 brain regions and 10 peripheral tissues using in vitro autoradiography with [3H]-EMPA. The widespread distribution of OX2R protein, including that in previously unrecognized regions of the retrosplenial cortex, was identified. In contrast, OX2R protein expression was negligible/very low in peripheral tissues, suggesting that orexin exerts OX2R-dependent physiological functions primarily through activation of the central nervous system. These findings will be useful for understanding the wide range of biological functions of OX2R and the application of OX2R agonists in various disorders.


Preliminary Characterization and In Vivo Studies of Structurally Identical (18)F- and (125)I-Labeled Benzyloxybenzenes for PET/SPECT Imaging of β-Amyloid Plaques.

  • Yanping Yang‎ et al.
  • Scientific reports‎
  • 2015‎

With the assistance of molecular docking and 3D-QSAR models established previously, structurally identical (18)F- and (125)I-labeled benzyloxybenzene derivatives were designed to achieve the early detection of Aβ plaques by PET/SPECT imaging. In competition binding assay, ligands 7a and 12a displayed high binding affinities to Aβ42 aggregates with Ki values of 19.5 nM and 23.9 nM, respectively. Specific plaque labeling was observed on the in vitro autoradiography of brain sections from AD patients and Tg mice. In biodistribution, [(125)I]7a, [(18)F]7a, [(125)I]12a and [(18)F]12a all exhibited high initial brain uptakes (>5% ID/g at 2 min). [(125)I]7a and [(125)I]12a cleared fast from the normal brain regions, while corresponding [(18)F]7a and [(18)F]12a showed slow washout rates. Dynamic microPET/CT and microSPECT/CT imaging data in normal ICR mice were in accordance with in vivo biodistribution results. In vivo metabolism results indicated that the different clearance profiles between the structurally identical (18)F- and (125)I-labeled tracers could be attributed to different biochemical characteristics of the radiometabolites. Radioiodinated benzyloxybenzene derivatives exhibited good in vivo biostability in brain. Ex vivo autoradiography further confirmed the strong in vivo Aβ labeling ability of [(125)I]7a. These new fluorinated and iodinated benzyloxybenzenes can develop into PET/SPECT dual imaging agents targeting Aβ plaques.


Potential of [11C]UCB-J as a PET tracer for islets of Langerhans.

  • Emmi Puuvuori‎ et al.
  • Scientific reports‎
  • 2021‎

Biomarkers for the measurement of islets of Langerhans could help elucidate the etiology of diabetes. Synaptic vesicle glycoprotein 2 A (SV2A) is a potential marker reported to be localized in the endocrine pancreas. [11C]UCB-J is a novel positron emission tomography (PET) radiotracer that binds to SV2A and was previously evaluated as a synaptic marker in the central nervous system. Here, we evaluated whether [11C]UCB-J could be utilized as a PET tracer for the islets of Langerhans in the pancreas by targeting SV2A. The mRNA transcription of SV2A was evaluated in human isolated islets of Langerhans and exocrine tissue. In vitro autoradiography was performed on pancreas and brain sections from rats and pigs, and consecutive sections were immunostained for insulin. Sprague-Dawley rats were examined with PET-MRI and ex vivo autoradiography at baseline and with administration of levetiracetam (LEV). Similarly, pigs were examined with dynamic PET-CT over the pancreas and brain after administration of [11C]UCB-J at baseline and after pretreatment with LEV. In vivo radioligand binding was assessed using a one-compartment tissue model. The mRNA expression of SV2A was nearly 7 times higher in endocrine tissue than in exocrine tissue (p < 0.01). In vitro autoradiography displayed focal binding of [11C]UCB-J in the pancreas of rats and pigs, but the binding pattern did not overlap with the insulin-positive areas or with ex vivo autoradiography. In rats, pancreas binding was higher than that in negative control tissues but could not be blocked by LEV. In pigs, the pancreas and brain exhibited accumulation of [11C]UCB-J above the negative control tissue spleen. While brain binding could be blocked by pretreatment with LEV, a similar effect was not observed in the pancreas. Transcription data indicate SV2A to be a valid target for imaging islets of Langerhans, but [11C]UCB-J does not appear to have sufficient sensitivity for this application.


Isotopic ratios of uranium and caesium in spherical radioactive caesium-bearing microparticles derived from the Fukushima Dai-ichi Nuclear Power Plant.

  • Yuichi Kurihara‎ et al.
  • Scientific reports‎
  • 2020‎

Spherical radioactive caesium (Cs)-bearing microparticles (CsMPs) were emitted during the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March, 2011. The emission source (timing) and formation process of these particles remain unclear. In this study, the isotopic ratios of uranium (235U and 238U) and caesium (133Cs, 134Cs, 135Cs, and 137Cs) isotopes in the five spherical CsMPs (ca. 2 μm in size) sampled at 50 km west of the FDNPP were determined using secondary ion mass spectrometry and laser ablation-ICPMS, respectively. Results showed that the 235U/238U ratios of CsMPs were homogeneous (1.93 ± 0.03, N = 4) and close to those estimated for the fuel cores in units 2 and 3, and that the Cs isotopic ratios of CsMP were identical to those of units 2 and 3. These results indicated that U and Cs in the spherical CsMPs originated exclusively from the fuel melt in the reactors. Based on a thorough review of literatures related to the detailed atmospheric releases of radionuclides, the flow of plumes from the FDNPP reactor units during the accident and the U and Cs isotopic ratio results in this study, we hereby suggest that the spherical CsMPs originate only from the fuel in unit 2 on the night of 14 March to the morning of 15 March. The variation range of the analysed 235U/238U isotopic ratios for the four spherical particles was extremely narrow. Thus, U may have been homogenised in the source through the formation of fuel melt, which ultimately evaporating and taken into CsMPs in the reactor and was released from the unit 2.


Pre-clinical pharmacology and mechanism of action of SG3199, the pyrrolobenzodiazepine (PBD) dimer warhead component of antibody-drug conjugate (ADC) payload tesirine.

  • John A Hartley‎ et al.
  • Scientific reports‎
  • 2018‎

Synthetic pyrrolobenzodiazepine (PBD) dimers, where two PBD monomers are linked through their aromatic A-ring phenolic C8-positions via a flexible propyldioxy tether, are highly efficient DNA minor groove cross-linking agents with potent cytotoxicity. PBD dimer SG3199 is the released warhead component of the antibody-drug conjugate (ADC) payload tesirine (SG3249), currently being evaluated in several ADC clinical trials. SG3199 was potently cytotoxic against a panel of human solid tumour and haematological cancer cell lines with a mean GI50 of 151.5 pM. Cells defective in DNA repair protein ERCC1 or homologous recombination repair showed increased sensitivity to SG3199 and the drug was only moderately susceptible to multidrug resistance mechanisms. SG3199 was highly efficient at producing DNA interstrand cross-links in naked linear plasmid DNA and dose-dependent cross-linking was observed in cells. Cross-links formed rapidly in cells and persisted over 36 hours. Following intravenous (iv) administration to rats SG3199 showed a very rapid clearance with a half life as short as 8 minutes. These combined properties of cytotoxic potency, rapid formation and persistence of DNA interstrand cross-links and very short half-life contribute to the emerging success of SG3199 as a warhead in clinical stage ADCs.


Increasing cell density globally enhances the biogenesis of Piwi-interacting RNAs in Bombyx mori germ cells.

  • Shozo Honda‎ et al.
  • Scientific reports‎
  • 2017‎

Piwi proteins and their bound Piwi-interacting RNAs (piRNAs) are predominantly expressed in the germline and play crucial roles in germline development by silencing transposons and other targets. Bombyx mori BmN4 cells are culturable germ cells that equip the piRNA pathway. Because of the scarcity of piRNA-expressing culturable cells, BmN4 cells are being utilized for the analyses of piRNA biogenesis. We here report that the piRNA biogenesis in BmN4 cells is regulated by cell density. As cell density increased, the abundance of Piwi proteins and piRNA biogenesis factors was commonly upregulated, resulting in an increased number of perinuclear nuage-like granules where Piwi proteins localize. Along with these phenomena, the abundance of mature piRNAs also globally increased, whereas levels of long piRNA precursor and transposons decreased, suggesting that increasing cell density promotes piRNA biogenesis pathway and that the resultant accumulation of mature piRNAs is functionally significant for transposon silencing. Our study reveals a previously uncharacterized link between cell density and piRNA biogenesis, designates cell density as a critical variable in piRNA studies using BmN4 cell system, and suggests the alteration of cell density as a useful tool to monitor piRNA biogenesis and function.


Imaging of Cerebral Amyloid Angiopathy with Bivalent (99m)Tc-Hydroxamamide Complexes.

  • Shimpei Iikuni‎ et al.
  • Scientific reports‎
  • 2016‎

Cerebral amyloid angiopathy (CAA), characterized by the deposition of amyloid aggregates in the walls of cerebral vasculature, is a major factor in intracerebral hemorrhage and vascular cognitive impairment and is also associated closely with Alzheimer's disease (AD). We previously reported (99m)Tc-hydroxamamide ((99m)Tc-Ham) complexes with a bivalent amyloid ligand showing high binding affinity for β-amyloid peptide (Aβ(1-42)) aggregates present frequently in the form in AD. In this article, we applied them to CAA-specific imaging probes, and evaluated their utility for CAA-specific imaging. In vitro inhibition assay using Aβ(1-40) aggregates deposited mainly in CAA and a brain uptake study were performed for (99m)Tc-Ham complexes, and all (99m)Tc-Ham complexes with an amyloid ligand showed binding affinity for Aβ(1-40) aggregates and very low brain uptake. In vitro autoradiography of human CAA brain sections and ex vivo autoradiography of Tg2576 mice were carried out for bivalent (99m)Tc-Ham complexes ([(99m)Tc]SB2A and [(99m)Tc]BT2B), and they displayed excellent labeling of Aβ depositions in human CAA brain sections and high affinity and selectivity to CAA in transgenic mice. These results may offer new possibilities for the development of clinically useful CAA-specific imaging probes based on the (99m)Tc-Ham complex.


Fluselenamyl: A Novel Benzoselenazole Derivative for PET Detection of Amyloid Plaques (Aβ) in Alzheimer's Disease.

  • G S M Sundaram‎ et al.
  • Scientific reports‎
  • 2016‎

Fluselenamyl (5), a novel planar benzoselenazole shows traits desirable of enabling noninvasive imaging of Aβ pathophysiology in vivo; labeling of both diffuse (an earlier manifestation of neuritic plaques) and fibrillar plaques in Alzheimer's disease (AD) brain sections, and remarkable specificity for mapping Aβ compared with biomarker proteins of other neurodegenerative diseases. Employing AD homogenates, [18F]-9, a PET tracer demonstrates superior (2-10 fold higher) binding affinity than approved FDA tracers, while also indicating binding to high affinity site on Aβ plaques. Pharmacokinetic studies indicate high initial influx of [18F]-9 in normal mice brains accompanied by rapid clearance in the absence of targeted plaques. Following incubation in human serum, [18F]-9 indicates presence of parental compound up to 3h thus indicating its stability. Furthermore, in vitro autoradiography studies of [18F]-9 with AD brain tissue sections and ex vivo autoradiography studies in transgenic mouse brain sections show cortical Aβ binding, and a fair correlation with Aβ immunostaining. Finally, multiphoton- and microPET/CT imaging indicate its ability to penetrate brain and label parenchymal plaques in transgenic mice. Following further validation of its performance in other AD rodent models and nonhuman primates, Fluselenamyl could offer a platform technology for monitoring earliest stages of Aβ pathophysiology in vivo.


Radiosynthesis and preclinical evaluation of [68Ga]Ga-NOTA-folate for PET imaging of folate receptor β-positive macrophages.

  • Olli Moisio‎ et al.
  • Scientific reports‎
  • 2020‎

Folate receptor β (FR-β), a marker expressed on macrophages, is a promising target for imaging of inflammation. Here, we report the radiosynthesis and preclinical evaluation of [68Ga]Ga-NOTA-folate (68Ga-FOL). After determining the affinity of 68Ga-FOL using cells expressing FR-β, we studied atherosclerotic mice with 68Ga-FOL and 18F-FDG PET/CT. In addition, we studied tracer distribution and co-localization with macrophages in aorta cryosections using autoradiography, histology, and immunostaining. The specificity of 68Ga-FOL was assessed in a blocking study with folate glucosamine. As a final step, human radiation doses were extrapolated from rat PET data. We were able to produce 68Ga-FOL with high radiochemical purity and moderate molar activity. Cell binding studies revealed that 68Ga-FOL had 5.1 nM affinity for FR-β. Myocardial uptake of 68Ga-FOL was 20-fold lower than that of 18F-FDG. Autoradiography and immunohistochemistry of the aorta revealed that 68Ga-FOL radioactivity co-localized with Mac-3-positive macrophage-rich atherosclerotic plaques. The plaque-to-healthy vessel wall ratio of 68Ga-FOL was significantly higher than that of 18F-FDG. Blocking studies verified that 68Ga-FOL was specific for FR. Based on estimations from rat data, the human effective dose was 0.0105 mSv/MBq. Together, these findings show that 68Ga-FOL represents a promising new FR-β-targeted tracer for imaging macrophage-associated inflammation.


18F-Flortaucipir in TDP-43 associated frontotemporal dementia.

  • R Smith‎ et al.
  • Scientific reports‎
  • 2019‎

Retention of 18F-Flortaucipir is reportedly increased in the semantic variant of primary progressive aphasia (svPPA), which is dominated by TDP-43 pathology. However, it is unclear if 18F-Flortaucipir is also increased in other TDP-43 diseases, such as bvFTD caused by a C9orf72 gene mutation. We therefore recruited six C9orf72 expansion carriers, six svPPA patients, and 54 healthy controls. All underwent 18F-Flortaucipir PET and MRI scanning. Data from 39 Alzheimer's Disease patients were used for comparison. PET tracer retention was assessed both at the region-of-interest (ROI) and at the voxel-level. Further, autoradiography using 3H-Flortaucipir was performed. SvPPA patients exhibited higher 18F-Flortaucipir retention in the lateral temporal cortex bilaterally according to ROI- and voxel-based analyses. In C9orf72 patients, 18F-Flortaucipir binding was slightly increased in the inferior frontal lobes in the ROI based analysis, but these results were not replicated in the voxel-based analysis. Autoradiography did not show specific binding in svPPA cases or in C9orf72-mutation carriers. In conclusion, temporal lobe 18F-Flortaucipir retention was observed in some cases of svPPA, but the uptake was of a lower magnitude compared to AD dementia. C9orf72-mutation carriers exhibited none or limited 18F-Flortaucipir retention, indicating that 18F-Flortaucipir binding in TDP-43 proteinopathies is not a general TDP-43 related phenomenon.


Characterisation of radioiodinated flavonoid derivatives for SPECT imaging of cerebral prion deposits.

  • Takeshi Fuchigami‎ et al.
  • Scientific reports‎
  • 2015‎

Prion diseases are fatal neurodegenerative diseases characterised by deposition of amyloid plaques containing abnormal prion protein aggregates (PrP(Sc)). This study aimed to evaluate the potential of radioiodinated flavonoid derivatives for single photon emission computed tomography (SPECT) imaging of PrP(Sc). In vitro binding assays using recombinant mouse PrP (rMoPrP) aggregates revealed that the 4-dimethylamino-substituted styrylchromone derivative (SC-NMe2) had higher in vitro binding affinity (Kd = 24.5 nM) and capacity (Bmax = 36.3 pmol/nmol protein) than three other flavonoid derivatives (flavone, chalcone, and aurone). Fluorescent imaging using brain sections from mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice demonstrated that SC-NMe2 clearly labelled PrP(Sc)-positive prion deposits in the mice brain. Two methoxy SC derivatives, SC-OMe and SC-(OMe)2, also showed high binding affinity for rMoPrP aggregates with Ki values of 20.8 and 26.6 nM, respectively. In vitro fluorescence and autoradiography experiments demonstrated high accumulation of [(125)I]SC-OMe and [(125)I]SC-(OMe)2 in prion deposit-rich regions of the mBSE-infected mouse brain. SPECT/computed tomography (CT) imaging and ex vivo autoradiography demonstrated that [(123)I]SC-OMe showed consistent brain distribution with the presence of PrP(Sc) deposits in the mBSE-infected mice brain. In conclusion, [(123)I]SC-OMe appears a promising SPECT radioligand for monitoring prion deposit levels in the living brain.


Cleaved CD31 as a target for in vivo molecular imaging of inflammation.

  • Jonathan Vigne‎ et al.
  • Scientific reports‎
  • 2019‎

There is a need for new targets to specifically localize inflammatory foci, usable in a wide range of organs. Here, we hypothesized that the cleaved molecular form of CD31 is a suitable target for molecular imaging of inflammation. We evaluated a bioconjugate of D-P8RI, a synthetic peptide that binds all cells with cleaved CD31, in an experimental rat model of sterile acute inflammation. Male Wistar rats were injected with turpentine oil into the gastrocnemius muscle two days before 99mTc-HYNIC-D-P8RI (or its analogue with L-Proline) SPECT/CT or [18F]FDG PET/MRI. Biodistribution, stability study, histology, imaging and autoradiography of 99mTc-HYNIC-D-P8RI were further performed. Biodistribution studies revealed rapid elimination of 99mTc-HYNIC-D-P8RI through renal excretion with almost no uptake from most organs and excellent in vitro and in vivo stability were observed. SPECT/CT imaging showed a significant higher 99mTc-HYNIC-D-P8RI uptake compared with its analogue with L-Proline (negative control) and no significant difference compared with [18F]FDG (positive control). Moreover, autoradiography and histology revealed a co-localization between 99mTc-HYNIC-D-P8RI uptake and inflammatory cell infiltration. 99mTc-HYNIC-D-P8RI constitutes a new tool for the detection and localization of inflammatory sites. Our work suggests that targeting cleaved CD31 is an attractive strategy for the specific in vivo imaging of inflammatory processes.


Focused Ultrasound-Induced Blood-Brain Barrier Opening Enhances GSK-3 Inhibitor Delivery for Amyloid-Beta Plaque Reduction.

  • Po-Hung Hsu‎ et al.
  • Scientific reports‎
  • 2018‎

Alzheimer's disease (AD) is a neurodegenerative disease that is the leading cause of age-related dementia. Currently, therapeutic agent delivery to the CNS is a valued approach for AD therapy. Unfortunately, the CNS penetration is greatly hampered by the blood-brain barrier (BBB). Focused-ultrasound (FUS) has been demonstrated to temporally open the BBB, thus promoting therapeutic agent delivery to the CNS. Recently, the BBB opening procedure was further reported to clear the deposited Aβ plaque due to microglia activation. In this study, we aimed to evaluate whether the use of FUS-induced BBB opening to enhance GSK-3 inhibitor delivery, which would bring additive effect of Aβ plaque clearance by FUS with the reduction of Aβ plaque synthesis by GSK-3 inhibitor in an AD mice model. FUS-induced BBB opening on APPswe/PSEN1-dE9 transgenic mice was performed unilaterally, with the contralateral hemisphere serving as a reference. GSK-3 level was confirmed by immunohistochemistry (IHC) and autoradiography (ARG) was also conducted to quantitatively confirm the Aβ plaque reduction. Results from IHC showed GSK-3 inhibitor effectively reduced GSK-3 activity up to 61.3% with the addition of FUS-BBB opening and confirming the proposed therapeutic route. ARG also showed significant Aβ-plaque reduction up to 31.5%. This study reveals the therapeutic potentials of ultrasound to AD treatment, and may provide a useful strategy for neurodegenerative disease treatment.


Neuronal apoptosis inhibitory protein (NAIP) localizes to the cytokinetic machinery during cell division.

  • Francisco Abadía-Molina‎ et al.
  • Scientific reports‎
  • 2017‎

The neuronal apoptosis inhibitory protein (NAIP) is a constituent of the inflammasome and a key component of the innate immune system. Here we use immunofluorescence to position NAIP within the cytokinetic apparatus, contiguous to chromosomal passenger complex (CPC), Centralspindlin, PRC1 and KIF4A. During metaphase, NAIP accumulates in the mitotic spindle poles and is shown in spindle microtubules; in anaphase NAIP is detected in the middle of the central spindle. At the end of cytokinesis, NAIP is localized in the outlying region of the stem body, the center of the intercellular bridge formed between daughter cells prior to cellular abscission. We also describe the sustained presence of NAIP mRNA and protein throughout the cell cycle with a significant increase observed in the G2/M phase. Consistent with a role for NAIP in cytokinesis, NAIP overexpression in HeLa cells promotes the acquisition of a multinuclear phenotype. Conversely, NAIP siRNA gene silencing results in an apoptotic lethal phenotype. Our confocal and super resolution stimulated-emission-depletion (STED) examination of mammalian cell cytokinesis demonstrate a potential new role for NAIP in addition to anti-apoptotic and innate immunology functions.


Identification of insulin-sensitizing molecules acting by disrupting the interaction between the Insulin Receptor and Grb14.

  • Anaïs Gondoin‎ et al.
  • Scientific reports‎
  • 2017‎

Metabolic diseases are characterized by a decreased action of insulin. During the course of the disease, usual treatments frequently fail and patients are finally submitted to insulinotherapy. There is thus a need for innovative therapeutic strategies to improve insulin action. Growth factor receptor-bound protein 14 (Grb14) is a molecular adapter that specifically binds to the activated insulin receptor (IR) and inhibits its tyrosine kinase activity. Molecules disrupting Grb14-IR binding are therefore potential insulin-sensitizing agents. We used Structure-Based Virtual Ligand Screening to generate a list of 1000 molecules predicted to hinder Grb14-IR binding. Using an acellular bioluminescence resonance energy transfer (BRET) assay, we identified, out of these 1000 molecules, 3 compounds that inhibited Grb14-IR interaction. Their inhibitory effect on insulin-induced Grb14-IR interaction was confirmed in co-immunoprecipitation experiments. The more efficient molecule (C8) was further characterized. C8 increased downstream Ras-Raf and PI3-kinase insulin signaling, as shown by BRET experiments in living cells. Moreover, C8 regulated the expression of insulin target genes in mouse primary hepatocytes. These results indicate that C8, by reducing Grb14-IR interaction, increases insulin signalling. The use of C8 as a lead compound should allow for the development of new molecules of potential therapeutic interest for the treatment of diabetes.


Regulation of base excision repair during adipogenesis and osteogenesis of bone marrow-derived mesenchymal stem cells.

  • Min Kim‎ et al.
  • Scientific reports‎
  • 2023‎

Bone marrow-derived human mesenchymal stem cells (hMSCs) can differentiate into various lineages, such as chondrocytes, adipocytes, osteoblasts, and neuronal lineages. It has been shown that the high-efficiency DNA-repair capacity of hMSCs is decreased during their differentiation. However, the underlying its mechanism during adipogenesis and osteogenesis is unknown. Herein, we investigated how alkyl-damage repair is modulated during adipogenic and osteogenic differentiation, especially focusing on the base excision repair (BER) pathway. Response to an alkylation agent was assessed via quantification of the double-strand break (DSB) foci and activities of BER-related enzymes during differentiation in hMSCs. Adipocytes showed high resistance against methyl methanesulfonate (MMS)-induced alkyl damage, whereas osteoblasts were more sensitive than hMSCs. During the differentiation, activities, and protein levels of uracil-DNA glycosylase were found to be regulated. In addition, ligation-related proteins, such as X-ray repair cross-complementing protein 1 (XRCC1) and DNA polymerase β, were upregulated in adipocytes, whereas their levels and recruitment declined during osteogenesis. These modulations of BER enzyme activity during differentiation influenced DNA repair efficiency and the accumulation of DSBs as repair intermediates in the nucleus. Taken together, we suggest that BER enzymatic activity is regulated in adipogenic and osteogenic differentiation and these alterations in the BER pathway led to different responses to alkyl damage from those in hMSCs.


The contribution of PARP1, PARP2 and poly(ADP-ribosyl)ation to base excision repair in the nucleosomal context.

  • M M Kutuzov‎ et al.
  • Scientific reports‎
  • 2021‎

The regulation of repair processes including base excision repair (BER) in the presence of DNA damage is implemented by a cellular signal: poly(ADP-ribosyl)ation (PARylation), which is catalysed by PARP1 and PARP2. Despite ample studies, it is far from clear how BER is regulated by PARPs and how the roles are distributed between the PARPs. Here, we investigated the effects of PARP1, PARP2 and PARylation on activities of the main BER enzymes (APE1, DNA polymerase β [Polβ] and DNA ligase IIIα [LigIIIα]) in combination with BER scaffold protein XRCC1 in the nucleosomal context. We constructed nucleosome core particles with midward- or outward-oriented damage. It was concluded that in most cases, the presence of PARP1 leads to the suppression of the activities of APE1, Polβ and to a lesser extent LigIIIα. PARylation by PARP1 attenuated this effect to various degrees depending on the enzyme. PARP2 had an influence predominantly on the last stage of BER: DNA sealing. Nonetheless, PARylation by PARP2 led to Polβ inhibition and to significant stimulation of LigIIIα activities in a NAD+-dependent manner. On the basis of the obtained and literature data, we suggest a hypothetical model of the contribution of PARP1 and PARP2 to BER.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: