Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 57 papers

Voxel-based morphometry in autopsy proven PSP and CBD.

  • Keith A Josephs‎ et al.
  • Neurobiology of aging‎
  • 2008‎

The aim of this study was to compare the patterns of grey and white matter atrophy on MRI in autopsy confirmed progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), and to determine whether the patterns vary depending on the clinical syndrome. Voxel-based morphometry was used to compare patterns of atrophy in 13 PSP and 11 CBD subjects and 24 controls. PSP and CBD subjects were also subdivided into those with a dominant dementia or extrapyramidal syndrome. PSP subjects showed brainstem atrophy with involvement of the cortex and underlying white matter. Frontoparietal grey and subcortical grey matter atrophy occurred in CBD. When subdivided, PSP subjects with an extrapyramidal syndrome had more brainstem atrophy and less cortical atrophy than CBD subjects with an extrapyramidal syndrome. PSP subjects with a dementia syndrome had more subcortical white matter atrophy than CBD subjects with a dementia syndrome. These results show regional differences between PSP and CBD that are useful in predicting the underlying pathology, and help to shed light on the in vivo distribution of regional atrophy in PSP and CBD.


Plasma sphingolipid changes with autopsy-confirmed Lewy Body or Alzheimer's pathology.

  • Rodolfo Savica‎ et al.
  • Alzheimer's & dementia (Amsterdam, Netherlands)‎
  • 2016‎

The clinical and pathological phenotypes of Dementia with Lewy Bodies (DLB) and Alzheimer's disease (AD) often overlap. We examined whether plasma lipids differed among individuals with autopsy-confirmed Lewy Body pathology or AD pathology.


Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies.

  • Zuzana Nedelska‎ et al.
  • Neurobiology of aging‎
  • 2015‎

Dementia with Lewy bodies (DLB) is characterized by preserved whole brain and medial temporal lobe volumes compared with Alzheimer's disease dementia (AD) on magnetic resonance imaging. However, frequently coexistent AD-type pathology may influence the pattern of regional brain atrophy rates in DLB patients. We investigated the pattern and magnitude of the atrophy rates from 2 serial MRIs in autopsy-confirmed DLB patients (n = 20) and mixed DLB/AD patients (n = 22), compared with AD (n = 30) and elderly nondemented control subjects (n = 15), followed antemortem. DLB patients without significant AD-type pathology were characterized by lower global and regional rates of atrophy, similar to control subjects. The mixed DLB/AD patients displayed greater atrophy rates in the whole brain, temporoparietal cortices, hippocampus and amygdala, and ventricle expansion, similar to AD patients. In the DLB and DLB/AD patients, the atrophy rates correlated with Braak neurofibrillary tangle stage, cognitive decline, and progression of motor symptoms. Global and regional atrophy rates are associated with AD-type pathology in DLB, and these rates can be used as biomarkers of AD progression in patients with LB pathology.


Predictors of cognitive impairment in primary age-related tauopathy: an autopsy study.

  • Megan A Iida‎ et al.
  • Acta neuropathologica communications‎
  • 2021‎

Primary age-related tauopathy (PART) is a form of Alzheimer-type neurofibrillary degeneration occurring in the absence of amyloid-beta (Aβ) plaques. While PART shares some features with Alzheimer disease (AD), such as progressive accumulation of neurofibrillary tangle pathology in the medial temporal lobe and other brain regions, it does not progress extensively to neocortical regions. Given this restricted pathoanatomical pattern and variable symptomatology, there is a need to reexamine and improve upon how PART is neuropathologically assessed and staged. We performed a retrospective autopsy study in a collection (n = 174) of post-mortem PART brains and used logistic regression to determine the extent to which a set of clinical and neuropathological features predict cognitive impairment. We compared Braak staging, which focuses on hierarchical neuroanatomical progression of AD tau and Aβ pathology, with quantitative assessments of neurofibrillary burden using computer-derived positive pixel counts on digitized whole slide images of sections stained immunohistochemically with antibodies targeting abnormal hyperphosphorylated tau (p-tau) in the entorhinal region and hippocampus. We also assessed other factors affecting cognition, including aging-related tau astrogliopathy (ARTAG) and atrophy. We found no association between Braak stage and cognitive impairment when controlling for age (p = 0.76). In contrast, p-tau burden was significantly correlated with cognitive impairment even when adjusting for age (p = 0.03). The strongest correlate of cognitive impairment was cerebrovascular disease, a well-known risk factor (p < 0.0001), but other features including ARTAG (p = 0.03) and hippocampal atrophy (p = 0.04) were also associated. In contrast, sex, APOE, psychiatric illness, education, argyrophilic grains, and incidental Lewy bodies were not. These findings support the hypothesis that comorbid pathologies contribute to cognitive impairment in subjects with PART. Quantitative approaches beyond Braak staging are critical for advancing our understanding of the extent to which age-related tauopathy changes impact cognitive function.


Rates of brain atrophy over time in autopsy-proven frontotemporal dementia and Alzheimer disease.

  • Jennifer L Whitwell‎ et al.
  • NeuroImage‎
  • 2008‎

Rates of brain loss have been shown to accelerate over time in early Alzheimer disease (AD); however the trajectory of change in frontotemporal lobar degeneration with ubiquitin immunoreactive-changes (FTLD-U) is unknown. This study compared the progression of atrophy over multiple MRI in subjects with autopsy-confirmed AD and FTLD-U. Nine subjects with autopsy-confirmed FTLD-U and nine with autopsy-confirmed AD were identified that had three or more serial MRI. The boundary-shift integral was used to calculate change over time in whole-brain and ventricular volume. A hierarchical regression model was used to estimate the slope of volume change in AD and FTLD-U over time and to estimate differences in the slopes across the subject groups. Whole-brain volume loss did not deviate from a linear rate over time in both AD and FTLD-U subjects, although this may be due to limited sample size. The FTLD-U subjects had a faster rate (23 ml/year) than the AD subjects (10 ml/year). The rate of ventricular expansion accelerated over time. At the point when each subject had a Clinical Dementia Rating Sum-of-Boxes score of 6, the annual rate was 7 ml/year in FTLD-U and 5 ml/year in AD. These rates of change increased by an estimated 1.66 ml/year in FTLD-U and 0.44 ml/year in AD, although these estimates were not significantly different between the two groups. The trajectories of brain and ventricular changes were similar in AD and FTLD-U suggesting that it is independent of pathology, although subjects with FTLD-U show a more rapidly progressive decline.


Sensitive ELISA-based detection method for the mitophagy marker p-S65-Ub in human cells, autopsy brain, and blood samples.

  • Jens O Watzlawik‎ et al.
  • Autophagy‎
  • 2021‎

Mitochondrial dysfunction is an early, imminent event in neurodegenerative disorders including Parkinson disease (PD) and Alzheimer disease (AD). The enzymatic pair PINK1 and PRKN/Parkin recognize and transiently label damaged mitochondria with ubiquitin (Ub) phosphorylated at Ser65 (p-S65-Ub) as a signal for degradation via the autophagy-lysosome system (mitophagy). Despite its discovery in cell culture several years ago, robust and quantitative detection of altered mitophagy in vivo has remained challenging. Here we developed a sandwich ELISA targeting p-S65-Ub with the goal to assess mitophagy levels in mouse brain and in human clinical and pathological samples. We characterized five total Ub and four p-S65-Ub antibodies by several techniques and found significant differences in their ability to recognize phosphorylated Ub. The most sensitive antibody pair detected recombinant p-S65-Ub chains in the femtomolar to low picomolar range depending on the poly-Ub chain linkage. Importantly, this ELISA was able to assess very low baseline mitophagy levels in unstressed human cells and in brains from wild-type and prkn knockout mice as well as elevated p-S65-Ub levels in autopsied frontal cortex from AD patients vs. control cases. Moreover, the assay allowed detection of p-S65-Ub in blood plasma and was able to discriminate between PINK1 mutation carriers and controls. In summary, we developed a robust and sensitive tool to measure mitophagy levels in cells, tissue, and body fluids. Our data strongly support the idea that the stress-activated PINK1-PRKN mitophagy pathway is constitutively active in mice and humans under unstimulated, physiological and elevated in diseased, pathological conditions.Abbreviations: Ab: antibody; AD: Alzheimer disease; AP: alkaline phosphatase; CV: coefficient of variation; ECL: electrochemiluminescence; KO: knockout; LoB: Limit of Blank; LoD: Limit of Detection; LoQ: Limit of Quantification; MSD: meso scale discovery; PD: Parkinson disease; p-S65-PRKN: phosphorylated PRKN at serine 65; p-S65-Ub: phosphorylated ubiquitin at serine 65; Std.Dev.: standard deviation; Ub: ubiquitin; WT: wild type.


Diffusion tractography of superior cerebellar peduncle and dentatorubrothalamic tracts in two autopsy confirmed progressive supranuclear palsy variants: Richardson syndrome and the speech-language variant.

  • Rodolfo G Gatto‎ et al.
  • NeuroImage. Clinical‎
  • 2022‎

Progressive supranuclear palsy (PSP) is a 4-repeat tauopathy with neurodegeneration typically observed in the superior cerebellar peduncle (SCP) and dentatorubrothalamic tracts (DRTT). However, it is unclear how these tracts are differentially affected in different clinical variants of PSP.


An MRI-Based Atlas for Correlation of Imaging and Pathologic Findings in Alzheimer's Disease.

  • Mekala R Raman‎ et al.
  • Journal of neuroimaging : official journal of the American Society of Neuroimaging‎
  • 2016‎

Pathologic diagnosis is the gold standard in evaluating imaging measures developed as biomarkers for pathologically defined disorders. A brain MRI atlas representing autopsy-sampled tissue can be used to directly compare imaging and pathology findings. Our objective was to develop a brain MRI atlas representing the cortical regions that are routinely sampled at autopsy for the diagnosis of Alzheimer's disease (AD).


An autoradiographic evaluation of AV-1451 Tau PET in dementia.

  • Val J Lowe‎ et al.
  • Acta neuropathologica communications‎
  • 2016‎

It is essential to determine the specificity of AV-1451 PET for tau in brain imaging by using pathological comparisons. We performed autoradiography in autopsy-confirmed Alzheimer disease and other neurodegenerative disorders to evaluate the specificity of AV-1451 binding for tau aggregates.


A molecular pathology, neurobiology, biochemical, genetic and neuroimaging study of progressive apraxia of speech.

  • Keith A Josephs‎ et al.
  • Nature communications‎
  • 2021‎

Progressive apraxia of speech is a neurodegenerative syndrome affecting spoken communication. Molecular pathology, biochemistry, genetics, and longitudinal imaging were investigated in 32 autopsy-confirmed patients with progressive apraxia of speech who were followed over 10 years. Corticobasal degeneration and progressive supranuclear palsy (4R-tauopathies) were the most common underlying pathologies. Perceptually distinct speech characteristics, combined with age-at-onset, predicted specific 4R-tauopathy; phonetic subtype and younger age predicted corticobasal degeneration, and prosodic subtype and older age predicted progressive supranuclear palsy. Phonetic and prosodic subtypes showed differing relationships within the cortico-striato-pallido-nigro-luysial network. Biochemical analysis revealed no distinct differences in aggregated 4R-tau while tau H1 haplotype frequency (69%) was lower compared to 1000+ autopsy-confirmed 4R-tauopathies. Corticobasal degeneration patients had faster rates of decline, greater cortical degeneration, and shorter illness duration than progressive supranuclear palsy. These findings help define the pathobiology of progressive apraxia of speech and may have consequences for development of 4R-tau targeting treatment.


APOE4 exacerbates α-synuclein seeding activity and contributes to neurotoxicity in Alzheimer's disease with Lewy body pathology.

  • Yunjung Jin‎ et al.
  • Acta neuropathologica‎
  • 2022‎

Approximately half of Alzheimer's disease (AD) brains have concomitant Lewy pathology at autopsy, suggesting that α-synuclein (α-SYN) aggregation is a regulated event in the pathogenesis of AD. Genome-wide association studies revealed that the ε4 allele of the apolipoprotein E (APOE4) gene, the strongest genetic risk factor for AD, is also the most replicated genetic risk factor for Lewy body dementia (LBD), signifying an important role of APOE4 in both amyloid-β (Aβ) and α-SYN pathogenesis. How APOE4 modulates α-SYN aggregation in AD is unclear. In this study, we aimed to determine how α-SYN is associated with AD-related pathology and how APOE4 impacts α-SYN seeding and toxicity. We measured α-SYN levels and their association with other established AD-related markers in brain samples from autopsy-confirmed AD patients (N = 469), where 54% had concomitant LB pathology (AD + LB). We found significant correlations between the levels of α-SYN and those of Aβ40, Aβ42, tau and APOE, particularly in insoluble fractions of AD + LB. Using a real-time quaking-induced conversion (RT-QuIC) assay, we measured the seeding activity of soluble α-SYN and found that α-SYN seeding was exacerbated by APOE4 in the AD cohort, as well as a small cohort of autopsy-confirmed LBD brains with minimal Alzheimer type pathology. We further fractionated the soluble AD brain lysates by size exclusion chromatography (SEC) ran on fast protein liquid chromatography (FPLC) and identified the α-SYN species (~ 96 kDa) that showed the strongest seeding activity. Finally, using human induced pluripotent stem cell (iPSC)-derived neurons, we showed that amplified α-SYN aggregates from AD + LB brain of patients with APOE4 were highly toxic to neurons, whereas the same amount of α-SYN monomer was not toxic. Our findings suggest that the presence of LB pathology correlates with AD-related pathologies and that APOE4 exacerbates α-SYN seeding activity and neurotoxicity, providing mechanistic insight into how APOE4 affects α-SYN pathogenesis in AD.


β-Amyloid PET and neuropathology in dementia with Lewy bodies.

  • Kejal Kantarci‎ et al.
  • Neurology‎
  • 2020‎

β-Amyloid (Aβ) pathology is common in patients with probable dementia with Lewy bodies (DLB). However, the pathologic basis and the differential diagnostic performance of Aβ PET are not established in DLB. Our objective was to investigate the pathologic correlates of 11C-Pittsburgh compound B(PiB) uptake on PET in cases with antemortem diagnosis of probable DLB or Lewy body disease (LBD) at autopsy.


Association between contact sports participation and chronic traumatic encephalopathy: a retrospective cohort study.

  • Kevin F Bieniek‎ et al.
  • Brain pathology (Zurich, Switzerland)‎
  • 2020‎

Chronic traumatic encephalopathy is a debilitating neurodegenerative disorder associated with repetitive traumatic brain injuries often sustained through prior contact sport participation. The frequency of this disorder in a diverse population, including amateur athletes, is unknown. Primary historical obituary and yearbook records were queried for 2566 autopsy cases in the Mayo Clinic Tissue Registry resulting in identification of 300 former athletes and 450 non-athletes. In these cases, neocortical tissue was screened for tau pathology with immunohistochemistry, including pathology consistent with chronic traumatic encephalopathy, blinded to exposure or demographic information. Using research infrastructure of the Rochester Epidemiology Project, a comprehensive and established medical records-linkage system of care providers in southern Minnesota and western Wisconsin, medical diagnostic billing codes pertaining to head trauma, dementia, movement disorders, substance abuse disorders and psychiatric disorders were recorded for cases and controls in a blinded manner. A total of 42 individuals had pathology consistent with, or features of, chronic traumatic encephalopathy. It was more frequent in athletes compared to non-athletes (27 cases versus 15 cases) and was largely observed in men (except for one woman). For contact sports, American football had the highest frequency of chronic traumatic encephalopathy pathology (15% of cases) and an odds ratio of 2.62 (P-value = 0.005). Cases with chronic traumatic encephalopathy pathology had higher frequencies of antemortem clinical features of dementia, psychosis, movement disorders and alcohol abuse compared to cases without chronic traumatic encephalopathy pathology. Understanding the frequency of chronic traumatic encephalopathy pathology in a large autopsy cohort with diverse exposure backgrounds provides a baseline for future prospective studies assessing the epidemiology and public health impact of chronic traumatic encephalopathy and sports-related repetitive head trauma.


A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer's disease severity.

  • Christopher G Schwarz‎ et al.
  • NeuroImage. Clinical‎
  • 2016‎

Alzheimer's disease (AD) researchers commonly use MRI as a quantitative measure of disease severity. Historically, hippocampal volume has been favored. Recently, "AD signature" measurements of gray matter (GM) volumes or cortical thicknesses have gained attention. Here, we systematically evaluate multiple thickness- and volume-based candidate-methods side-by-side, built using the popular FreeSurfer, SPM, and ANTs packages, according to the following criteria: (a) ability to separate clinically normal individuals from those with AD; (b) (extent of) correlation with head size, a nuisance covariatel (c) reliability on repeated scans; and (d) correlation with Braak neurofibrillary tangle stage in a group with autopsy. We show that volume- and thickness-based measures generally perform similarly for separating clinically normal from AD populations, and in correlation with Braak neurofibrillary tangle stage at autopsy. Volume-based measures are generally more reliable than thickness measures. As expected, volume measures are highly correlated with head size, while thickness measures are generally not. Because approaches to statistically correcting volumes for head size vary and may be inadequate to deal with this underlying confound, and because our goal is to determine a measure which can be used to examine age and sex effects in a cohort across a large age range, we thus recommend thickness-based measures. Ultimately, based on these criteria and additional practical considerations of run-time and failure rates, we recommend an AD signature measure formed from a composite of thickness measurements in the entorhinal, fusiform, parahippocampal, mid-temporal, inferior-temporal, and angular gyrus ROIs using ANTs with input segmentations from SPM12.


Sex and age interact to determine clinicopathologic differences in Alzheimer's disease.

  • Amanda M Liesinger‎ et al.
  • Acta neuropathologica‎
  • 2018‎

Women reportedly make up two-thirds of Alzheimer's disease (AD) dementia sufferers. Many estimates regarding AD, however, are based on clinical series lacking autopsy confirmation. The Florida Autopsied Multi-Ethnic (FLAME) cohort was queried for AD cases with a total of 1625 identified ranging in age from 53 to 102 years at death. Standard neuropathologic procedures were employed and clinical information was retrospectively collected. Clinicopathologic and genetic data (MAPT and APOE) were stratified by sex. Within the neuropathologically diagnosed AD cohort, the overall number of women and men did not differ. Men were younger at onset of cognitive symptoms, had a shorter disease duration, and more often had atypical (non-amnestic) clinical presentations. The frequency of autopsy-confirmed AD among women and men stratified by age at death revealed an inverse U-shaped curve in men and a U-shaped curve in women, with both curves having inflections at approximately 70 years of age. Regional counts of neurofibrillary tangles differed in women and men, especially when examined by age intervals. Women had overall greater severity of neurofibrillary tangle counts compared to men, especially in the hippocampus. Men were more often classified as hippocampal sparing AD, whereas limbic predominant AD was more common in women. Men and women did not differ in frequency of MAPT haplotype or APOE genotype. Atypical clinical presentations, younger age at onset and shorter disease duration were more frequent in men, suggesting that the lower reported frequency of AD in men may be due to more frequent atypical clinical presentations not recognized as AD. Our data suggest that neuropathologically diagnosed AD cases have the same frequency of women and men, but their clinical presentations and ages at onset tend to differ.


Investigation of 15 of the top candidate genes for late-onset Alzheimer's disease.

  • Olivia Belbin‎ et al.
  • Human genetics‎
  • 2011‎

The 12 genome-wide association studies (GWAS) published to-date for late-onset Alzheimer's disease (LOAD) have identified over 40 candidate LOAD risk modifiers, in addition to apolipoprotein (APOE) ε4. A few of these novel LOAD candidate genes, namely BIN1, CLU, CR1, EXOC3L2 and PICALM, have shown consistent replication, and are thus credible LOAD susceptibility genes. To evaluate other promising LOAD candidate genes, we have added data from our large, case-control series (n=5,043) to meta-analyses of all published follow-up case-control association studies for six LOAD candidate genes that have shown significant association across multiple studies (TNK1, GAB2, LOC651924, GWA_14q32.13, PGBD1 and GALP) and for an additional nine previously suggested candidate genes. Meta-analyses remained significant at three loci after addition of our data: GAB2 (OR=0.78, p=0.007), LOC651924 (OR=0.91, p=0.01) and TNK1 (OR=0.92, p=0.02). Breslow-Day tests revealed significant heterogeneity between studies for GAB2 (p<0.0001) and GWA_14q32.13 (p=0.006). We have also provided suggestive evidence that PGBD1 (p=0.04) and EBF3 (p=0.03) are associated with age-at-onset of LOAD. Finally, we tested for interactions between these 15 genes, APOE ε4 and the five novel LOAD genes BIN1, CLU, CR1, EXOC3L2 and PICALM but none were significant after correction for multiple testing. Overall, this large, independent follow-up study for 15 of the top LOAD candidate genes provides support for GAB2 and LOC651924 (6q24.1) as risk modifiers of LOAD and novel associations between PGBD1 and EBF3 with age-at-onset.


TREM2 p.R47H substitution is not associated with dementia with Lewy bodies.

  • Ronald L Walton‎ et al.
  • Neurology. Genetics‎
  • 2016‎

Dementia with Lewy bodies (DLB) is the second leading cause of neurodegenerative dementia in the elderly and is clinically characterized by the presence of cognitive decline, parkinsonism, REM sleep behavior disorder, and visual hallucinations.(1,2) At autopsy, α-synuclein-positive Lewy-related pathology is observed throughout the brain. Concomitant Alzheimer disease-related pathology including amyloid plaques and, to a lesser degree, neurofibrillary tangles are often present.(2) The clinical characteristics of DLB share overlapping features with Alzheimer disease dementia (AD) and Parkinson disease (PD). A recent genetic association study examining known hits from PD and AD identified variants at both the α-synuclein (SNCA) and APOE loci as influencing the individual risk to DLB.(3) These findings would suggest that DLB may be a distinct disease with shared genetic risk factors with PD and AD.


Clinicopathological and 123I-FP-CIT SPECT correlations in patients with dementia.

  • Youngsin Jung‎ et al.
  • Annals of clinical and translational neurology‎
  • 2018‎

The relationship between clinicopathologic diagnosis and 123I-FP-CIT SPECT in 18 patients with dementia (12 with Lewy body disease) from one center in the United States was assessed. The sensitivity and specificity of abnormal 123I-FP-CIT SPECT with reduced striatal uptake on visual inspection for predicting Lewy body disease were 91.7% and 83.3%, respectively. The mean calculated putamen to occipital ratio (mPOR) based on regions of interest was significantly reduced in Lewy body disease compared to non-Lewy body disease cases (P = 0.002). In this study, abnormal 123I-FP-CIT SPECT was strongly associated with underlying Lewy body disease pathology, supporting the utility of 123I-FP-CIT SPECT in the clinical diagnosis of dementia with Lewy bodies.


Creating the Pick's disease International Consortium: Association study of MAPT H2 haplotype with risk of Pick's disease.

  • Rebecca R Valentino‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

Pick's disease (PiD) is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. PiD is pathologically defined by argyrophilic inclusion Pick bodies and ballooned neurons in the frontal and temporal brain lobes. PiD is characterised by the presence of Pick bodies which are formed from aggregated, hyperphosphorylated, 3-repeat tau proteins, encoded by the MAPT gene. The MAPT H2 haplotype has consistently been associated with a decreased disease risk of the 4-repeat tauopathies of progressive supranuclear palsy and corticobasal degeneration, however its role in susceptibility to PiD is unclear. The primary aim of this study was to evaluate the association between MAPT H2 and risk of PiD.


White-matter integrity on DTI and the pathologic staging of Alzheimer's disease.

  • Kejal Kantarci‎ et al.
  • Neurobiology of aging‎
  • 2017‎

Pattern of diffusion tensor MRI (DTI) alterations were investigated in pathologically-staged Alzheimer's disease (AD) patients (n = 46). Patients with antemortem DTI studies and a range of AD pathology at autopsy were included. Patients with a high neurofibrillary tangle (NFT) stage (Braak IV-VI) had significantly elevated mean diffusivity (MD) in the crus of fornix and ventral cingulum tracts, precuneus, and entorhinal white matter on voxel-based analysis after adjusting for age and time from MRI to death (p < 0.001). Higher MD and lower fractional anisotropy in the ventral cingulum tract, entorhinal, and precuneus white matter was associated with higher Braak NFT stage and clinical disease severity. There were no MD and fractional anisotropy differences among the low (none and sparse) and high (moderate and frequent) β-amyloid neuritic plaque groups. The NFT pathology of AD is associated with DTI alterations involving the medial temporal limbic connections and medial parietal white matter. This pattern of diffusion abnormalities is also associated with clinical disease severity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: