Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 1 papers out of 1 papers

Electric Bus Pedal Misapplication Detection Based on Phase Space Reconstruction Method.

  • Aihong Lyu‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

Due to the environmental protection of electric buses, they are gradually replacing traditional fuel buses. Several previous studies have found that accidents related to electric vehicles are linked to Unintended Acceleration (UA), which is mostly caused by the driver pressing the wrong pedal. Therefore, this study proposed a Model for Detecting Pedal Misapplication in Electric Buses (MDPMEB). In this work, natural driving experiments for urban electric buses and pedal misapplication simulation experiments were carried out in a closed field; furthermore, a phase space reconstruction method was introduced, based on chaos theory, to map sequence data to a high-dimensional space in order to produce normal braking and pedal misapplication image datasets. Based on these findings, a modified Swin Transformer network was built. To prevent the model from overfitting when considering small sample data and to improve the generalization ability of the model, it was pre-trained using a publicly available dataset; moreover, the weights of the prior knowledge model were loaded into the model for training. The proposed model was also compared to machine learning and Convolutional Neural Networks (CNN) algorithms. This study showed that this model was able to detect normal braking and pedal misapplication behavior accurately and quickly, and the accuracy rate on the test dataset is 97.58%, which is 9.17% and 4.5% higher than the machine learning algorithm and CNN algorithm, respectively.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: