2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 42 papers

3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process.

  • Mohamed Nadhir Djekidel‎ et al.
  • Genome biology‎
  • 2015‎

Various efforts have been made to elucidate the cooperating proteins involved in maintaining chromatin interactions; however, many are still unknown. Here, we present 3CPET, a tool based on a non-parametric Bayesian approach, to infer the set of the most probable protein complexes involved in maintaining chromatin interactions and the regions that they may control, making it a valuable downstream analysis tool in chromatin conformation studies. 3CPET does so by combining data from ChIA-PET, transcription factor binding sites, and protein interactions. 3CPET results show biologically significant and accurate predictions when validated against experimental and simulation data.


BL-Hi-C is an efficient and sensitive approach for capturing structural and regulatory chromatin interactions.

  • Zhengyu Liang‎ et al.
  • Nature communications‎
  • 2017‎

In human cells, DNA is hierarchically organized and assembled with histones and DNA-binding proteins in three dimensions. Chromatin interactions play important roles in genome architecture and gene regulation, including robustness in the developmental stages and flexibility during the cell cycle. Here we propose in situ Hi-C method named Bridge Linker-Hi-C (BL-Hi-C) for capturing structural and regulatory chromatin interactions by restriction enzyme targeting and two-step proximity ligation. This method improves the sensitivity and specificity of active chromatin loop detection and can reveal the regulatory enhancer-promoter architecture better than conventional methods at a lower sequencing depth and with a simpler protocol. We demonstrate its utility with two well-studied developmental loci: the beta-globin and HOXC cluster regions.


ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis.

  • Guipeng Li‎ et al.
  • Nucleic acids research‎
  • 2017‎

ChIA-PET2 is a versatile and flexible pipeline for analyzing different types of ChIA-PET data from raw sequencing reads to chromatin loops. ChIA-PET2 integrates all steps required for ChIA-PET data analysis, including linker trimming, read alignment, duplicate removal, peak calling and chromatin loop calling. It supports different kinds of ChIA-PET data generated from different ChIA-PET protocols and also provides quality controls for different steps of ChIA-PET analysis. In addition, ChIA-PET2 can use phased genotype data to call allele-specific chromatin interactions. We applied ChIA-PET2 to different ChIA-PET datasets, demonstrating its significantly improved performance as well as its ability to easily process ChIA-PET raw data. ChIA-PET2 is available at https://github.com/GuipengLi/ChIA-PET2.


Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification.

  • Dingming Wu‎ et al.
  • BMC genomics‎
  • 2015‎

One major goal of large-scale cancer omics study is to identify molecular subtypes for more accurate cancer diagnoses and treatments. To deal with high-dimensional cancer multi-omics data, a promising strategy is to find an effective low-dimensional subspace of the original data and then cluster cancer samples in the reduced subspace. However, due to data-type diversity and big data volume, few methods can integrative and efficiently find the principal low-dimensional manifold of the high-dimensional cancer multi-omics data.


HiCDB: a sensitive and robust method for detecting contact domain boundaries.

  • Fengling Chen‎ et al.
  • Nucleic acids research‎
  • 2018‎

Contact domains are closely linked to gene regulation and lineage commitment, while current understanding of contact domains and their boundaries is still limited. Here, we present a novel method HiCDB, which is constructively based on local relative insulation metric and multi-scale aggregation approach to detect contact domain boundaries (CDBs) on Hi-C maps. Compared with other 'state-of-art' methods, HiCDB shows improved sensitivity and specificity in determining CDBs at various Hi-C resolutions. The superiority of HiCDB enabled us to study the epigenetic features of detected CDBs and showed enrichment of architectural proteins and cell-type-specific transcription factor binding sites at CDBs. The further comparison of GM12878 and IMR90 Hi-C datasets suggested that cell-type-specific CDBs are marked by active regulatory signals and correlate with activation of nearby cell identity genes.


A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass.

  • Xuehui Liu‎ et al.
  • Aging‎
  • 2019‎

Cellular senescence is an important mechanism of autonomous tumor suppression, while its consequence such as the senescence-associated secretory phenotype (SASP) may drive tumorigenesis and age-related diseases. Therefore, controlling the cell fate optimally when encountering senescence stress is helpful for anti-cancer or anti-aging treatments. To identify genes essential for senescence establishment or maintenance, we carried out a CRISPR-based screen with a deliberately designed single-guide RNA (sgRNA) library. The library comprised of about 12,000 kinds of sgRNAs targeting 1378 senescence-associated genes selected by integrating the information of literature mining, protein-protein interaction network, and differential gene expression. We successfully detected a dozen gene deficiencies potentially causing senescence bypass, and their phenotypes were further validated with a high true positive rate. RNA-seq analysis showed distinct transcriptome patterns of these bypass cells. Interestingly, in the bypass cells, the expression of SASP genes was maintained or elevated with CHEK2, HAS1, or MDK deficiency; but neutralized with MTOR, CRISPLD2, or MORF4L1 deficiency. Pathways of some age-related neurodegenerative disorders were also downregulated with MTOR, CRISPLD2, or MORF4L1 deficiency. The results demonstrated that disturbing these genes could lead to distinct cell fates as a consequence of senescence bypass, suggesting that they may play essential roles in cellular senescence.


The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence.

  • Xianglin Zhang‎ et al.
  • Genome research‎
  • 2021‎

Heterochromatin remodeling is critical for various cell processes. In particular, the "loss of heterochromatin" phenotype in cellular senescence is associated with the process of aging and age-related disorders. Although biological processes of senescent cells, including senescence-associated heterochromatin foci (SAHF) formation, chromosome compaction, and redistribution of key proteins, have been closely associated with high-order chromatin structure, the relationship between the high-order chromatin reorganization and the loss of heterochromatin phenotype during senescence has not been fully understood. By using senescent and deep senescent fibroblasts induced by DNA damage harboring the "loss of heterochromatin" phenotype, we observed progressive 3D reorganization of heterochromatin during senescence. Facultative and constitutive heterochromatin marked by H3K27me3 and H3K9me3, respectively, show different alterations. Facultative heterochromatin tends to switch from the repressive B-compartment to the active A-compartment, whereas constitutive heterochromatin shows no significant changes at the compartment level but enhanced interactions between themselves. Both types of heterochromatin show increased chromatin accessibility and gene expression leakage during senescence. Furthermore, increased chromatin accessibility in potential CTCF binding sites accompanies the establishment of novel loops in constitutive heterochromatin. Finally, we also observed aberrant expression of repetitive elements, including LTR (long terminal repeat) and satellite classes. Overall, facultative and constitutive heterochromatin show both similar and distinct multiscale alterations in the 3D map, chromatin accessibility, and gene expression leakage. This study provides an epigenomic map of heterochromatin reorganization during senescence.


Regulatory RNA binding proteins contribute to the transcriptome-wide splicing alterations in human cellular senescence.

  • Qiongye Dong‎ et al.
  • Aging‎
  • 2018‎

Dysregulation of mRNA splicing has been observed in certain cellular senescence process. However, the common splicing alterations on the whole transcriptome shared by various types of senescence are poorly understood. In order to systematically identify senescence-associated transcriptomic changes in genome-wide scale, we collected RNA sequencing datasets of different human cell types with a variety of senescence-inducing methods from public databases and performed meta-analysis. First, we discovered that a group of RNA binding proteins were consistently down-regulated in diverse senescent samples and identified 406 senescence-associated common differential splicing events. Then, eight differentially expressed RNA binding proteins were predicted to regulate these senescence-associated splicing alterations through an enrichment analysis of their RNA binding information, including motif scanning and enhanced cross-linking immunoprecipitation data. In addition, we constructed the splicing regulatory modules that might contribute to senescence-associated biological processes. Finally, it was confirmed that knockdown of the predicted senescence-associated potential splicing regulators through shRNAs in HepG2 cell line could result in senescence-like splicing changes. Taken together, our work demonstrated a broad range of common changes in mRNA splicing switches and detected their central regulatory RNA binding proteins during senescence. These findings would help to better understand the coordinating splicing alterations in cellular senescence.


FIND: difFerential chromatin INteractions Detection using a spatial Poisson process.

  • Mohamed Nadhir Djekidel‎ et al.
  • Genome research‎
  • 2018‎

Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio.


Alterations of specific chromatin conformation affect ATRA-induced leukemia cell differentiation.

  • Yanjian Li‎ et al.
  • Cell death & disease‎
  • 2018‎

Chromatin conformation plays a key role in regulating gene expression and controlling cell differentiation. However, the whole-genome chromatin conformation changes that occur during leukemia cell differentiation are poorly understood. Here, we characterized the changes in chromatin conformation, histone states, chromatin accessibility, and gene expression using an all-trans retinoic acid (ATRA)-induced HL-60 cell differentiation model. The results showed that the boundaries of topological associated domains (TADs) were stable during differentiation; however, the chromatin conformations within several specific TADs were obviously changed. By combining H3K4me3, H3K27ac, and Hi-C signals, we annotated the differential gene-regulatory chromatin interactions upon ATRA induction. The gains and losses of the gene-regulatory chromatin interactions are significantly correlated with gene expression and chromatin accessibility. Finally, we found that the loss of GATA2 expression and DNA binding are crucial for the differentiation process, and changes in the chromatin structure around the GATA2 regulate its expression upon ATRA induction. This study provided both statistical insights and experimental details regarding the relationship between chromatin conformation changes and transcription regulation during leukemia cell differentiation, and the results suggested that the chromatin conformation is a new type of potential drug target for cancer therapy.


ScaffComb: A Phenotype-Based Framework for Drug Combination Virtual Screening in Large-Scale Chemical Datasets.

  • Zhaofeng Ye‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2021‎

Combinational therapy is used for a long time in cancer treatment to overcome drug resistance related to monotherapy. Increased pharmacological data and the rapid development of deep learning methods have enabled the construction of models to predict and screen drug pairs. However, the size of drug libraries is restricted to hundreds to thousands of compounds. The ScaffComb framework, which aims to bridge the gaps in the virtual screening of drug combinations in large-scale databases, is proposed here. Inspired by phenotype-based drug design, ScaffComb integrates phenotypic information into molecular scaffolds, which can be used to screen the drug library and identify potent drug combinations. First, ScaffComb is validated using the US food and drug administration dataset and known drug combinations are successfully reidentified. Then, ScaffComb is applied to screen the ZINC and ChEMBL databases, which yield novel drug combinations and reveal an ability to discover new synergistic mechanisms. To our knowledge, ScaffComb is the first method to use phenotype-based virtual screening of drug combinations in large-scale chemical datasets.


Super-resolution dipole orientation mapping via polarization demodulation.

  • Karl Zhanghao‎ et al.
  • Light, science & applications‎
  • 2016‎

Fluorescence polarization microscopy (FPM) aims to detect the dipole orientation of fluorophores and to resolve structural information for labeled organelles via wide-field or confocal microscopy. Conventional FPM often suffers from the presence of a large number of molecules within the diffraction-limited volume, with averaged fluorescence polarization collected from a group of dipoles with different orientations. Here, we apply sparse deconvolution and least-squares estimation to fluorescence polarization modulation data and demonstrate a super-resolution dipole orientation mapping (SDOM) method that resolves the effective dipole orientation from a much smaller number of fluorescent molecules within a sub-diffraction focal area. We further apply this method to resolve structural details in both fixed and live cells. For the first time, we show that different borders of a dendritic spine neck exhibit a heterogeneous distribution of dipole orientation. Furthermore, we illustrate that the dipole is always perpendicular to the direction of actin filaments in mammalian kidney cells and radially distributed in the hourglass structure of the septin protein under specific labelling. The accuracy of the dipole orientation can be further mapped using the orientation uniform factor, which shows the superiority of SDOM compared with its wide-field counterpart as the number of molecules is decreased within the smaller focal area. Using the inherent feature of the orientation dipole, the SDOM technique, with its fast imaging speed (at sub-second scale), can be applied to a broad range of fluorescently labeled biological systems to simultaneously resolve the valuable dipole orientation information with super-resolution imaging.


Integrative molecular analysis of metastatic hepatocellular carcinoma.

  • Dongfang Wang‎ et al.
  • BMC medical genomics‎
  • 2019‎

Hepatocellular carcinoma (HCC) is the major type of primary liver cancer. Intrahepatic metastasis, such as portal vein tumor thrombosis (PVTT), strongly indicates poor prognosis of HCC. But now, there are limited understandings of the molecular features and mechanisms of those metastatic HCCs.


Nucleosome eviction and multiple co-factor binding predict estrogen-receptor-alpha-associated long-range interactions.

  • Chao He‎ et al.
  • Nucleic acids research‎
  • 2014‎

Many enhancers regulate their target genes via long-distance interactions. High-throughput experiments like ChIA-PET have been developed to map such largely cell-type-specific interactions between cis-regulatory elements genome-widely. In this study, we integrated multiple types of data in order to reveal the general hidden patterns embedded in the ChIA-PET data. We found characteristic distance features related to promoter-promoter, enhancer-enhancer and insulator-insulator interactions. Although a protein may have many binding sites along the genome, our hypothesis is that those sites that share certain open chromatin structure can accommodate relatively larger protein complex consisting of specific regulatory and 'bridging' factors, and may be more likely to form robust long-range deoxyribonucleic acid (DNA) loops. This hypothesis was validated in the estrogen receptor alpha (ERα) ChIA-PET data. An efficient classifier was built to predict ERα-associated long-range interactions solely from the related ChIP-seq data, hence linking distal ERα-dependent enhancers to their target genes. We further applied the classifier to generate additional novel interactions, which were undetected in the original ChIA-PET paper but were validated by other independent experiments. Our work provides a new insight into the long-range chromatin interactions through deeper and integrative ChIA-PET data analysis and demonstrates DNA looping predictability from ordinary ChIP-seq data.


Integration of single cell data by disentangled representation learning.

  • Tiantian Guo‎ et al.
  • Nucleic acids research‎
  • 2022‎

Recent developments of single cell RNA-sequencing technologies lead to the exponential growth of single cell sequencing datasets across different conditions. Combining these datasets helps to better understand cellular identity and function. However, it is challenging to integrate different datasets from different laboratories or technologies due to batch effect, which are interspersed with biological variances. To overcome this problem, we have proposed Single Cell Integration by Disentangled Representation Learning (SCIDRL), a domain adaption-based method, to learn low-dimensional representations invariant to batch effect. This method can efficiently remove batch effect while retaining cell type purity. We applied it to thirteen diverse simulated and real datasets. Benchmark results show that SCIDRL outperforms other methods in most cases and exhibits excellent performances in two common situations: (i) effective integration of batch-shared rare cell types and preservation of batch-specific rare cell types; (ii) reliable integration of datasets with different cell compositions. This demonstrates SCIDRL will offer a valuable tool for researchers to decode the enigma of cell heterogeneity.


Web3DMol: interactive protein structure visualization based on WebGL.

  • Maoxiang Shi‎ et al.
  • Nucleic acids research‎
  • 2017‎

A growing number of web-based databases and tools for protein research are being developed. There is now a widespread need for visualization tools to present the three-dimensional (3D) structure of proteins in web browsers. Here, we introduce our 3D modeling program-Web3DMol-a web application focusing on protein structure visualization in modern web browsers. Users submit a PDB identification code or select a PDB archive from their local disk, and Web3DMol will display and allow interactive manipulation of the 3D structure. Featured functions, such as sequence plot, fragment segmentation, measure tool and meta-information display, are offered for users to gain a better understanding of protein structure. Easy-to-use APIs are available for developers to reuse and extend Web3DMol. Web3DMol can be freely accessed at http://web3dmol.duapp.com/, and the source code is distributed under the MIT license.


Characterizing microRNA-mediated modulation of gene expression noise and its effect on synthetic gene circuits.

  • Lei Wei‎ et al.
  • Cell reports‎
  • 2021‎

MicroRNAs (miRNAs) have been shown to modulate gene expression noise, but less is known about how miRNAs with different properties may regulate noise differently. Here, we investigate the role of competing RNAs and the composition of miRNA response elements (MREs) in modulating noise. We find that weak competing RNAs could introduce lower noise than strong competing RNAs. In comparison with a single MRE, both repetitive and composite MREs can reduce the noise at low expression, but repetitive MREs can elevate the noise remarkably at high expression. We further observed the behavior of a synthetic cell-type classifier with miRNAs as inputs and find that miRNAs and MREs that could introduce higher noise tend to enhance cell state transition. These results provide a systematic and quantitative understanding of the function of miRNAs in controlling gene expression noise and the utilization of miRNAs to modulate the behavior of synthetic gene circuits.


Multi-stage analysis of gene expression and transcription regulation in C57/B6 mouse liver development.

  • Tingting Li‎ et al.
  • Genomics‎
  • 2009‎

The liver performs a number of essential functions for life. The development of such a complex organ relies on finely regulated gene expression profiles which change over time in the development and determine the phenotype and function of the liver. We used high-density oligonucleotide microarrays to study the gene expression and transcription regulation at 14 time points across the C57/B6 mouse liver development, which include E11.5 (embryonic day 11.5), E12.5, E13.5, E14.5, E15.5, E16.5, E17.5, E18.5, Day0 (the day of birth), Day3, Day7, Day14, Day21, and normal adult liver. With these data, we made a comprehensive analysis on gene expression patterns, functional preferences and transcriptional regulations during the liver development. A group of uncharacterized genes which might be involved in the fetal hematopoiesis were detected.


Network-based global inference of human disease genes.

  • Xuebing Wu‎ et al.
  • Molecular systems biology‎
  • 2008‎

Deciphering the genetic basis of human diseases is an important goal of biomedical research. On the basis of the assumption that phenotypically similar diseases are caused by functionally related genes, we propose a computational framework that integrates human protein-protein interactions, disease phenotype similarities, and known gene-phenotype associations to capture the complex relationships between phenotypes and genotypes. We develop a tool named CIPHER to predict and prioritize disease genes, and we show that the global concordance between the human protein network and the phenotype network reliably predicts disease genes. Our method is applicable to genetically uncharacterized phenotypes, effective in the genome-wide scan of disease genes, and also extendable to explore gene cooperativity in complex diseases. The predicted genetic landscape of over 1000 human phenotypes, which reveals the global modular organization of phenotype-genotype relationships. The genome-wide prioritization of candidate genes for over 5000 human phenotypes, including those with under-characterized disease loci or even those lacking known association, is publicly released to facilitate future discovery of disease genes.


3D genome alterations associated with dysregulated HOXA13 expression in high-risk T-lineage acute lymphoblastic leukemia.

  • Lu Yang‎ et al.
  • Nature communications‎
  • 2021‎

3D genome alternations can dysregulate gene expression by rewiring enhancer-promoter interactions and lead to diseases. We report integrated analyses of 3D genome alterations and differential gene expressions in 18 newly diagnosed T-lineage acute lymphoblastic leukemia (T-ALL) patients and 4 healthy controls. 3D genome organizations at the levels of compartment, topologically associated domains and loop could hierarchically classify different subtypes of T-ALL according to T cell differentiation trajectory, similar to gene expressions-based classification. Thirty-four previously unrecognized translocations and 44 translocation-mediated neo-loops are mapped by Hi-C analysis. We find that neo-loops formed in the non-coding region of the genome could potentially regulate ectopic expressions of TLX3, TAL2 and HOXA transcription factors via enhancer hijacking. Importantly, both translocation-mediated neo-loops and NUP98-related fusions are associated with HOXA13 ectopic expressions. Patients with HOXA11-A13 expressions, but not other genes in the HOXA cluster, have immature immunophenotype and poor outcomes. Here, we highlight the potentially important roles of 3D genome alterations in the etiology and prognosis of T-ALL.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: