Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

Neuroanatomical and neurofunctional markers of social cognition in autism spectrum disorder.

  • Michelle A Patriquin‎ et al.
  • Human brain mapping‎
  • 2016‎

Social impairments in autism spectrum disorder (ASD), a hallmark feature of its diagnosis, may underlie specific neural signatures that can aid in differentiating between those with and without ASD. To assess common and consistent patterns of differences in brain responses underlying social cognition in ASD, this study applied an activation likelihood estimation (ALE) meta-analysis to results from 50 neuroimaging studies of social cognition in children and adults with ASD. In addition, the group ALE clusters of activation obtained from this was used as a social brain mask to perform surface-based cortical morphometry (SBM) in an empirical structural MRI dataset collected from 55 ASD and 60 typically developing (TD) control participants. Overall, the ALE meta-analysis revealed consistent differences in activation in the posterior superior temporal sulcus at the temporoparietal junction, middle frontal gyrus, fusiform face area (FFA), inferior frontal gyrus (IFG), amygdala, insula, and cingulate cortex between ASD and TD individuals. SBM analysis showed alterations in the thickness, volume, and surface area in individuals with ASD in STS, insula, and FFA. Increased cortical thickness was found in individuals with ASD, the IFG. The results of this study provide functional and anatomical bases of social cognition abnormalities in ASD by identifying common signatures from a large pool of neuroimaging studies. These findings provide new insights into the quest for a neuroimaging-based marker for ASD. Hum Brain Mapp 37:3957-3978, 2016. © 2016 Wiley Periodicals, Inc.


Autonomic and brain responses associated with empathy deficits in autism spectrum disorder.

  • Xiaosi Gu‎ et al.
  • Human brain mapping‎
  • 2015‎

Accumulating evidence suggests that autonomic signals and their cortical representations are closely linked to emotional processes, and that related abnormalities could lead to social deficits. Although socio-emotional impairments are a defining feature of autism spectrum disorder (ASD), empirical evidence directly supporting the link between autonomic, cortical, and socio-emotional abnormalities in ASD is still lacking. In this study, we examined autonomic arousal indexed by skin conductance responses (SCR), concurrent cortical responses measured by functional magnetic resonance imaging, and effective brain connectivity estimated by dynamic causal modeling in seventeen unmedicated high-functioning adults with ASD and seventeen matched controls while they performed an empathy-for-pain task. Compared to controls, adults with ASD showed enhanced SCR related to empathetic pain, along with increased neural activity in the anterior insular cortex, although their behavioral empathetic pain discriminability was reduced and overall SCR was decreased. ASD individuals also showed enhanced correlation between SCR and neural activities in the anterior insular cortex. Importantly, significant group differences in effective brain connectivity were limited to greater reduction in the negative intrinsic connectivity of the anterior insular cortex in the ASD group, indicating a failure in attenuating anterior insular responses to empathetic pain. These results suggest that aberrant interoceptive precision, as indexed by abnormalities in autonomic activity and its central representations, may underlie empathy deficits in ASD.


Structural connectivity of the amygdala in young adults with autism spectrum disorder.

  • Clare R Gibbard‎ et al.
  • Human brain mapping‎
  • 2018‎

Autism spectrum disorder (ASD) is characterized by impairments in social cognition, a function associated with the amygdala. Subdivisions of the amygdala have been identified which show specificity of structure, connectivity, and function. Little is known about amygdala connectivity in ASD. The aim of this study was to investigate the microstructural properties of amygdala-cortical connections and their association with ASD behaviours, and whether connectivity of specific amygdala subregions is associated with particular ASD traits. The brains of 51 high-functioning young adults (25 with ASD; 26 controls) were scanned using MRI. Amygdala volume was measured, and amygdala-cortical connectivity estimated using probabilistic tractography. An iterative 'winner takes all' algorithm was used to parcellate the amygdala based on its primary cortical connections. Measures of amygdala connectivity were correlated with clinical scores. In comparison with controls, amygdala volume was greater in ASD (F(1,94) = 4.19; p = .04). In white matter (WM) tracts connecting the right amygdala to the right cortex, ASD subjects showed increased mean diffusivity (t = 2.35; p = .05), which correlated with the severity of emotion recognition deficits (rho = -0.53; p = .01). Following amygdala parcellation, in ASD subjects reduced fractional anisotropy in WM connecting the left amygdala to the temporal cortex was associated with with greater attention switching impairment (rho = -0.61; p = .02). This study demonstrates that both amygdala volume and the microstructure of connections between the amygdala and the cortex are altered in ASD. Findings indicate that the microstructure of right amygdala WM tracts are associated with overall ASD severity, but that investigation of amygdala subregions can identify more specific associations.


Enhanced brain signal variability in children with autism spectrum disorder during early childhood.

  • Tetsuya Takahashi‎ et al.
  • Human brain mapping‎
  • 2016‎

Extensive evidence shows that a core neurobiological mechanism of autism spectrum disorder (ASD) involves aberrant neural connectivity. Recent advances in the investigation of brain signal variability have yielded important information about neural network mechanisms. That information has been applied fruitfully to the assessment of aging and mental disorders. Multiscale entropy (MSE) analysis can characterize the complexity inherent in brain signal dynamics over multiple temporal scales in the dynamics of neural networks. For this investigation, we sought to characterize the magnetoencephalography (MEG) signal variability during free watching of videos without sound using MSE in 43 children with ASD and 72 typically developing controls (TD), emphasizing early childhood to older childhood: a critical period of neural network maturation. Results revealed an age-related increase of brain signal variability in a specific timescale in TD children, whereas atypical age-related alteration was observed in the ASD group. Additionally, enhanced brain signal variability was observed in children with ASD, and was confirmed particularly for younger children. In the ASD group, symptom severity was associated region-specifically and timescale-specifically with reduced brain signal variability. These results agree well with a recently reported theory of increased brain signal variability during development and aberrant neural connectivity in ASD, especially during early childhood. Results of this study suggest that MSE analytic method might serve as a useful approach for characterizing neurophysiological mechanisms of typical-developing and its alterations in ASD through the detection of MEG signal variability at multiple timescales.


Dynamic functional network reconfiguration underlying the pathophysiology of schizophrenia and autism spectrum disorder.

  • Zening Fu‎ et al.
  • Human brain mapping‎
  • 2021‎

The dynamics of the human brain span multiple spatial scales, from connectivity associated with a specific region/network to the global organization, each representing different brain mechanisms. Yet brain reconfigurations at different spatial scales are seldom explored and whether they are associated with the neural aspects of brain disorders is far from understood. In this study, we introduced a dynamic measure called step-wise functional network reconfiguration (sFNR) to characterize how brain configuration rewires at different spatial scales. We applied sFNR to two independent datasets, one includes 160 healthy controls (HCs) and 151 patients with schizophrenia (SZ) and the other one includes 314 HCs and 255 individuals with autism spectrum disorder (ASD). We found that both SZ and ASD have increased whole-brain sFNR and sFNR between cerebellar and subcortical/sensorimotor domains. At the ICN level, the abnormalities in SZ are mainly located in ICNs within subcortical, sensory, and cerebellar domains, while the abnormalities in ASD are more widespread across domains. Interestingly, the overlap SZ-ASD abnormality in sFNR between cerebellar and sensorimotor domains was correlated with the reasoning-problem-solving performance in SZ (r = -.1652, p = .0058) as well as the Autism Diagnostic Observation Schedule in ASD (r = .1853, p = .0077). Our findings suggest that dynamic reconfiguration deficits may represent a key intersecting point for SZ and ASD. The investigation of brain dynamics at different spatial scales can provide comprehensive insights into the functional reconfiguration, which might advance our knowledge of cognitive decline and other pathophysiology in brain disorders.


Developmental pattern of the cortical topology in high-functioning individuals with autism spectrum disorder.

  • Weihao Zheng‎ et al.
  • Human brain mapping‎
  • 2021‎

A number of studies have indicated alterations of brain morphology in individuals with autism spectrum disorder (ASD); however, how ASD influences the topological organization of the brain cortex at different developmental stages is not yet well characterized. In this study, we used structural images of 492 high-functioning participants in the Autism Brain Imaging Data Exchange database acquired from 17 international imaging centers, including 75 autistic children (age 7-11 years), 91 adolescents with ASD (age 12-17 years), and 80 young adults with ASD (age 18-29 years), and 246 typically developing controls (TDCs) that were age, gender, handedness, and full-scale IQ matched. Cortical thickness (CT) and surface area (SA) were extracted and the covariance between cortical regions across participants were treated as a network to examine developmental patterns of the cortical topological organization at different stages. A center-paired resampling strategy was developed to control the center bias during the permutation test. Compared with the TDCs, network of SA (but not CT) of individuals with ASD showed reduced small-worldness in childhood, and the network hubs were reorganized in the adulthood such that hubs inclined to connect with nonhub nodes and demonstrated more dispersed spatial distribution. Furthermore, the SA network of the ASD cohort exhibited increased segregation of the inferior parietal lobule and prefrontal cortex, and insular-opercular cortex in all three age groups, resulting in the emergence of two unique modules in the autistic brain. Our findings suggested that individuals with ASD may undergo remarkable remodeling of the cortical topology from childhood to adulthood, which may be associated with the altered social and cognitive functions in ASD.


Amygdala subnuclei volumes and anxiety behaviors in children and adolescents with autism spectrum disorder, attention deficit hyperactivity disorder, and obsessive-compulsive disorder.

  • Diane Seguin‎ et al.
  • Human brain mapping‎
  • 2022‎

Alterations in the structural maturation of the amygdala subnuclei volumes are associated with anxiety behaviors in adults and children with neurodevelopmental and associated disorders. This study investigated the relationship between amygdala subnuclei volumes and anxiety in 233 children and adolescents (mean age = 11.02 years; standard deviation = 3.17) with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and children with obsessive compulsive disorder (OCD), as well as typically developing (TD) children. Parents completed the Child Behavior Checklist (CBCL), and the children underwent structural MRI at 3 T. FreeSurfer software was used to automatically segment the amygdala subnuclei. A general linear model revealed that children and adolescents with ASD, ADHD, and OCD had higher anxiety scores compared to TD children (p < .001). A subsequent interaction analysis revealed that children with ASD (B = 0.09, p < .0001) and children with OCD (B = 0.1, p < .0001) who had high anxiety had larger right central nuclei volumes compared with TD children. Similar results were obtained for the right anterior amygdaloid area. Amygdala subnuclei volumes may be key to identifying children with neurodevelopmental disorders or those with OCD who are at high risk for anxiety. Findings may inform the development of targeted behavioral interventions to address anxiety behaviors and to assess the downstream effects of such interventions.


Connectivity dynamics in typical development and its relationship to autistic traits and autism spectrum disorder.

  • Barnaly Rashid‎ et al.
  • Human brain mapping‎
  • 2018‎

Recent advances in neuroimaging techniques have provided significant insights into developmental trajectories of human brain function. Characterizations of typical neurodevelopment provide a framework for understanding altered neurodevelopment, including differences in brain function related to developmental disorders and psychopathology. Historically, most functional connectivity studies of typical and atypical development operate under the assumption that connectivity remains static over time. We hypothesized that relaxing stationarity assumptions would reveal novel features of both typical brain development related to children on the autism spectrum. We employed a "chronnectomic" (recurring, time-varying patterns of connectivity) approach to evaluate transient states of connectivity using resting-state functional MRI in a population-based sample of 774 6- to 10-year-old children. Dynamic connectivity was evaluated using a sliding-window approach, and revealed four transient states. Internetwork connectivity increased with age in modularized dynamic states, illustrating an important pattern of connectivity in the developing brain. Furthermore, we demonstrated that higher levels of autistic traits and ASD diagnosis were associated with longer dwell times in a globally disconnected state. These results provide a roadmap to the chronnectomic organization of the developing brain and suggest that characteristics of functional brain connectivity are related to children on the autism spectrum.


Nonreplication of functional connectivity differences in autism spectrum disorder across multiple sites and denoising strategies.

  • Ye He‎ et al.
  • Human brain mapping‎
  • 2020‎

A rapidly growing number of studies on autism spectrum disorder (ASD) have used resting-state fMRI to identify alterations of functional connectivity, with the hope of identifying clinical biomarkers or underlying neural mechanisms. However, results have been largely inconsistent across studies, and there remains a pressing need to determine the primary factors influencing replicability. Here, we used resting-state fMRI data from the Autism Brain Imaging Data Exchange to investigate two potential factors: denoising strategy and data site (which differ in terms of sample, data acquisition, etc.). We examined the similarity of both group-averaged functional connectomes and group-level differences (ASD vs. control) across 33 denoising pipelines and four independently-acquired datasets. The group-averaged connectomes were highly consistent across pipelines (r = 0.92 ± 0.06) and sites (r = 0.88 ± 0.02). However, the group differences, while still consistent within site across pipelines (r = 0.76 ± 0.12), were highly inconsistent across sites regardless of choice of denoising strategies (r = 0.07 ± 0.04), suggesting lack of replication may be strongly influenced by site and/or cohort differences. Across-site similarity remained low even when considering the data at a large-scale network level or when considering only the most significant edges. We further show through an extensive literature survey that the parameters chosen in the current study (i.e., sample size, age range, preprocessing methods) are quite representative of the published literature. These results highlight the importance of examining replicability in future studies of ASD, and, more generally, call for extra caution when interpreting alterations in functional connectivity across groups of individuals.


Adjusting for allometric scaling in ABIDE I challenges subcortical volume differences in autism spectrum disorder.

  • Camille Michèle Williams‎ et al.
  • Human brain mapping‎
  • 2020‎

Inconsistencies across studies investigating subcortical correlates of autism spectrum disorder (ASD) may stem from small sample size, sample heterogeneity, and omitting or linearly adjusting for total brain volume (TBV). To properly adjust for TBV, brain allometry-the nonlinear scaling relationship between regional volumes and TBV-was considered when examining subcortical volumetric differences between typically developing (TD) and ASD individuals. Autism Brain Imaging Data Exchange I (ABIDE I; N = 654) data was analyzed with two methodological approaches: univariate linear mixed effects models and multivariate multiple group confirmatory factor analyses. Analyses were conducted on the entire sample and in subsamples based on age, sex, and full scale intelligence quotient (FSIQ). A similar ABIDE I study was replicated and the impact of different TBV adjustments on neuroanatomical group differences was investigated. No robust subcortical allometric or volumetric group differences were observed in the entire sample across methods. Exploratory analyses suggested that allometric scaling and volume group differences may exist in certain subgroups defined by age, sex, and/or FSIQ. The type of TBV adjustment influenced some reported volumetric and scaling group differences. This study supports the absence of robust volumetric differences between ASD and TD individuals in the investigated volumes when adjusting for brain allometry, expands the literature by finding no group difference in allometric scaling, and further suggests that differing TBV adjustments contribute to the variability of reported neuroanatomical differences in ASD.


Examining volumetric gradients based on the frustum surface ratio in the brain in autism spectrum disorder.

  • Caroline Mann‎ et al.
  • Human brain mapping‎
  • 2021‎

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is accompanied by neurodevelopmental differences in regional cortical volume (CV), and a potential layer-specific pathology. Conventional measures of CV, however, do not indicate how volume is distributed across cortical layers. In a sample of 92 typically developing (TD) controls and 92 adult individuals with ASD (aged 18-52 years), we examined volumetric gradients by quantifying the degree to which CV is weighted from the pial to the white surface of the brain. Overall, the spatial distribution of Frustum Surface Ratio (FSR) followed the gyral and sulcal pattern of the cortex and approximated a bimodal Gaussian distribution caused by a linear mixture of vertices on gyri and sulci. Measures of FSR were highly correlated with vertex-wise estimates of mean curvature, sulcal depth, and pial surface area, although none of these features explained more than 76% variability in FSR on their own. Moreover, in ASD, we observed a pattern of predominant increases in the degree of FSR relative to TD controls, with an atypical neurodevelopmental trajectory. Our findings suggest a more outward-weighted gradient of CV in ASD, which may indicate a larger contribution of supragranular layers to regional differences in CV.


Atypical measures of diffusion at the gray-white matter boundary in autism spectrum disorder in adulthood.

  • Anke Bletsch‎ et al.
  • Human brain mapping‎
  • 2021‎

Autism spectrum disorder (ASD) is a highly complex neurodevelopmental condition that is accompanied by neuroanatomical differences on the macroscopic and microscopic level. Findings from histological, genetic, and more recently in vivo neuroimaging studies converge in suggesting that neuroanatomical abnormalities, specifically around the gray-white matter (GWM) boundary, represent a crucial feature of ASD. However, no research has yet characterized the GWM boundary in ASD based on measures of diffusion. Here, we registered diffusion tensor imaging data to the structural T1-weighted images of 92 adults with ASD and 92 matched neurotypical controls in order to examine between-group differences and group-by-sex interactions in fractional anisotropy and mean diffusivity sampled at the GWM boundary, and at different sampling depths within the superficial white and into the gray matter. As hypothesized, we observed atypical diffusion at and around the GWM boundary in ASD, with between-group differences and group-by-sex interactions depending on tissue class and sampling depth. Furthermore, we identified that altered diffusion at the GWM boundary partially (i.e., ~50%) overlapped with atypical gray-white matter tissue contrast in ASD. Our study thus replicates and extends previous work highlighting the GWM boundary as a crucial target of neuropathology in ASD, and guides future work elucidating etiological mechanisms.


Abnormal individualized peak functional connectivity toward potential repetitive transcranial magnetic stimulation treatment of autism spectrum disorder.

  • Jing Jin‎ et al.
  • Human brain mapping‎
  • 2023‎

Functional connectivity (FC) derived from resting-state functional magnetic resonance imaging has been widely applied to guide precise repetitive transcranial magnetic stimulation (rTMS). The left, right, and bilateral dorsolateral prefrontal cortices (DLPFC) have been used as rTMS treatment target regions for autism spectrum disorder (ASD), albeit with moderate efficacy. Thus, we aimed to develop an individualized localization method for rTMS treatment of ASD. We included 266 male ASDs and 297 male typically-developed controls (TDCs) from the Autism Brain Imaging Data Exchange Dataset. The nucleus accumbens (NAc) was regarded as a promising effective region, which was used as a seed and individualized peak FC strength in the DLPFC was compared between ASD and TDC. Correlation analysis was conducted between individualized peak FC strength and symptoms in ASD. We also investigated the spatial distribution of individualized peak FC locations in the DLPFC and conducted voxel-wise analysis to compare NAc-based FC between the two groups. ASD showed stronger peak FC in the right DLPFC related to TDC (Cohen's d = -.19, 95% CI: -0.36 to -0.03, t = -2.30, p = .02). Moreover, negative correlation was found between the peak FC strength in the right DLPFC and Autism Diagnostic Observation Schedule (ADOS) scores, which assessed both the social communication and interaction (r = -.147, p = .04, uncorrected significant), and stereotyped behaviors and restricted interests (r = -.198, p = .02, corrected significant). Peak FC locations varied substantially across participants. No significant differences in NAc-based FC in the DLPFC were found in the voxel-wise comparison. Our study supports the use of individualized peak FC-guided precise rTMS treatment of male ASD. Moreover, stimulating the right DLPFC might alleviate core symptoms of ASD.


A new multimodality fusion classification approach to explore the uniqueness of schizophrenia and autism spectrum disorder.

  • Yuhui Du‎ et al.
  • Human brain mapping‎
  • 2022‎

Schizophrenia (SZ) and autism spectrum disorder (ASD) sharing overlapping symptoms have a long history of diagnostic confusion. It is unclear what their differences at a brain level are. Here, we propose a multimodality fusion classification approach to investigate their divergence in brain function and structure. Using brain functional network connectivity (FNC) calculated from resting-state fMRI data and gray matter volume (GMV) estimated from sMRI data, we classify the two disorders using the main data (335 SZ and 380 ASD patients) via an unbiased 10-fold cross-validation pipeline, and also validate the classification generalization ability on an independent cohort (120 SZ and 349 ASD patients). The classification accuracy reached up to 83.08% for the testing data and 72.10% for the independent data, significantly better than the results from using the single-modality features. The discriminative FNCs that were automatically selected primarily involved the sub-cortical, default mode, and visual domains. Interestingly, all discriminative FNCs relating to the default mode network showed an intermediate strength in healthy controls (HCs) between SZ and ASD patients. Their GMV differences were mainly driven by the frontal gyrus, temporal gyrus, and insula. Regarding these regions, the mean GMV of HC fell intermediate between that of SZ and ASD, and ASD showed the highest GMV. The middle frontal gyrus was associated with both functional and structural differences. In summary, our work reveals the unique neuroimaging characteristics of SZ and ASD that can achieve high and generalizable classification accuracy, supporting their potential as disorder-specific neural substrates of the two entwined disorders.


Cofluctuation analysis reveals aberrant default mode network patterns in adolescents and youths with autism spectrum disorder.

  • Lei Li‎ et al.
  • Human brain mapping‎
  • 2022‎

Resting-state functional connectivity (rsFC) approaches provide informative estimates of the functional architecture of the brain, and recently-proposed cofluctuation analysis temporally unwraps FC at every moment in time, providing refined information for quantifying brain dynamics. As a brain network disorder, autism spectrum disorder (ASD) was characterized by substantial alteration in FC, but the contribution of moment-to-moment-activity cofluctuations to the overall dysfunctional connectivity pattern in ASD remains poorly understood. Here, we used the cofluctuation approach to explore the underlying dynamic properties of FC in ASD, using a large multisite resting-state functional magnetic resonance imaging (rs-fMRI) dataset (ASD = 354, typically developing controls [TD] = 446). Our results verified that the networks estimated using high-amplitude frames were highly correlated with the traditional rsFC. Moreover, these frames showed higher average amplitudes in participants with ASD than those in the TD group. Principal component analysis was performed on the activity patterns in these frames and aggregated over all subjects. The first principal component (PC1) corresponds to the default mode network (DMN), and the PC1 coefficients were greater in participants with ASD than those in the TD group. Additionally, increased ASD symptom severity was associated with the increased coefficients, which may result in excessive internally oriented cognition and social cognition deficits in individuals with ASD. Our finding highlights the utility of cofluctuation approaches in prevalent neurodevelopmental disorders and verifies that the aberrant contribution of DMN to rsFC may underline the symptomatology in adolescents and youths with ASD.


Functional connectivity for an "island of sparing" in autism spectrum disorder: an fMRI study of visual search.

  • Brandon Keehn‎ et al.
  • Human brain mapping‎
  • 2013‎

Although autism is usually characterized with respect to sociocommunicative impairments, visual search is known as a domain of relative performance strength in this disorder. This study used functional MRI during visual search in children with autism spectrum disorder (n = 19; mean age = 13;10) and matched typically developing children (n = 19; mean age = 14;0). We selected regions of interest within two attentional networks known to play a crucial role in visual search processes, such as goal-directed selective attention, filtering of irrelevant distractors, and detection of behaviorally-relevant information, and examined activation and connectivity within and between these attentional networks. Additionally, based on prior research suggesting links between visual search abilities and autism symptomatology, we tested for correlations between sociocommunicative impairments and behavioral and neural indices of search. Contrary to many previous functional connectivity magnetic resonance imaging studies of autism that reported functional underconnectivity for task domains of weakness, we found atypically increased connectivity within and between attentional networks in autism. Additionally, we found increased functional connectivity for occipital regions, both locally and for long-distance connections with frontal regions. Both behavioral and neural indices of search were correlated with sociocommunicative impairment in children with autism. This association suggests that strengths in nonsocial visuospatial processing may be related to the development of core autistic sociocommunicative impairments.


Partially impaired functional connectivity states between right anterior insula and default mode network in autism spectrum disorder.

  • Xiaonan Guo‎ et al.
  • Human brain mapping‎
  • 2019‎

Time-invariant resting-state functional connectivity studies have illuminated the crucial role of the right anterior insula (rAI) in prominent social impairments of autism spectrum disorder (ASD). However, a recent dynamic connectivity study demonstrated that rather than being stationary, functional connectivity patterns of the rAI vary significantly across time. The present study aimed to explore the differences in functional connectivity in dynamic states of the rAI between individuals with ASD and typically developing controls (TD). Resting-state functional magnetic resonance imaging data obtained from a publicly available database were analyzed in 209 individuals with ASD and 298 demographically matched controls. A k-means clustering algorithm was utilized to obtain five dynamic states of functional connectivity of the rAI. The temporal properties, frequency properties, and meta-analytic decoding were first identified in TD group to obtain the characteristics of each rAI dynamic state. Multivariate analysis of variance was then performed to compare the functional connectivity patterns of the rAI between ASD and TD groups in obtained states. Significantly impaired connectivity was observed in ASD in the ventral medial prefrontal cortex and posterior cingulate cortex, which are two critical hubs of the default mode network (DMN). States in which ASD showed decreased connectivity between the rAI and these regions were those more relevant to socio-cognitive processing. From a dynamic perspective, these findings demonstrate partially impaired resting-state functional connectivity patterns between the rAI and DMN across states in ASD, and provide novel insights into the neural mechanisms underlying social impairments in individuals with ASD.


Altered default mode network causal connectivity patterns in autism spectrum disorder revealed by Liang information flow analysis.

  • Jing Cong‎ et al.
  • Human brain mapping‎
  • 2023‎

Autism spectrum disorder (ASD) is a pervasive developmental disorder with severe cognitive impairment in social communication and interaction. Previous studies have reported that abnormal functional connectivity patterns within the default mode network (DMN) were associated with social dysfunction in ASD. However, how the altered causal connectivity pattern within the DMN affects the social functioning in ASD remains largely unclear. Here, we introduced the Liang information flow method, widely applied to climate science and quantum mechanics, to uncover the brain causal network patterns in ASD. Compared with the healthy controls (HC), we observed that the interactions among the dorsal medial prefrontal cortex (dMPFC), ventral medial prefrontal cortex (vMPFC), hippocampal formation, and temporo-parietal junction showed more inter-regional causal connectivity differences in ASD. For the topological property analysis, we also found the clustering coefficient of DMN and the In-Out degree of anterior medial prefrontal cortex were significantly decreased in ASD. Furthermore, we found that the causal connectivity from dMPFC to vMPFC was correlated with the clinical symptoms of ASD. These altered causal connectivity patterns indicated that the DMN inter-regions information processing was perturbed in ASD. In particular, we found that the dMPFC acts as a causal source in the DMN in HC, whereas it plays a causal target in ASD. Overall, our findings indicated that the Liang information flow method could serve as an important way to explore the DMN causal connectivity patterns, and it also can provide novel insights into the nueromechanisms underlying DMN dysfunction in ASD.


Both stronger and weaker cerebro-cerebellar functional connectivity patterns during processing of spoken sentences in autism spectrum disorder.

  • Jussi Alho‎ et al.
  • Human brain mapping‎
  • 2023‎

Cerebellar differences have long been documented in autism spectrum disorder (ASD), yet the extent to which such differences might impact language processing in ASD remains unknown. To investigate this, we recorded brain activity with magnetoencephalography (MEG) while ASD and age-matched typically developing (TD) children passively processed spoken meaningful English and meaningless Jabberwocky sentences. Using a novel source localization approach that allows higher resolution MEG source localization of cerebellar activity, we found that, unlike TD children, ASD children showed no difference between evoked responses to meaningful versus meaningless sentences in right cerebellar lobule VI. ASD children also had atypically weak functional connectivity in the meaningful versus meaningless speech condition between right cerebellar lobule VI and several left-hemisphere sensorimotor and language regions in later time windows. In contrast, ASD children had atypically strong functional connectivity for in the meaningful versus meaningless speech condition between right cerebellar lobule VI and primary auditory cortical areas in an earlier time window. The atypical functional connectivity patterns in ASD correlated with ASD severity and the ability to inhibit involuntary attention. These findings align with a model where cerebro-cerebellar speech processing mechanisms in ASD are impacted by aberrant stimulus-driven attention, which could result from atypical temporal information and predictions of auditory sensory events by right cerebellar lobule VI.


Individual-based morphological brain network organization and its association with autistic symptoms in young children with autism spectrum disorder.

  • Changchun He‎ et al.
  • Human brain mapping‎
  • 2021‎

Individual-based morphological brain networks built from T1-weighted magnetic resonance imaging (MRI) reflect synchronous maturation intensities between anatomical regions at the individual level. Autism spectrum disorder (ASD) is a socio-cognitive and neurodevelopmental disorder with high neuroanatomical heterogeneity, but the specific patterns of morphological networks in ASD remain largely unexplored at the individual level. In this study, individual-based morphological networks were constructed by using high-resolution structural MRI data from 40 young children with ASD (age range: 2-8 years) and 38 age-, gender-, and handedness-matched typically developing children (TDC). Measurements were recorded as threefold. Results showed that compared with TDC, young children with ASD exhibited lower values of small-worldness (i.e., σ) of individual-level morphological brain networks, increased morphological connectivity in cortico-striatum-thalamic-cortical (CSTC) circuitry, and decreased morphological connectivity in the cortico-cortical network. In addition, morphological connectivity abnormalities can predict the severity of social communication deficits in young children with ASD, thus confirming an associational impact at the behavioral level. These findings suggest that the morphological brain network in the autistic developmental brain is inefficient in segregating and distributing information. The results also highlight the crucial role of abnormal morphological connectivity patterns in the socio-cognitive deficits of ASD and support the possible use of the aberrant developmental patterns of morphological brain networks in revealing new clinically-relevant biomarkers for ASD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: