Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Accelerated QT adaptation following atropine-induced heart rate increase in LQT1 patients versus healthy controls: A sign of disturbed hysteresis.

  • Pia Dahlberg‎ et al.
  • Physiological reports‎
  • 2022‎

Hysteresis, a ubiquitous regulatory phenomenon, is a salient feature of the adaptation of ventricular repolarization duration to heart rate (HR) change. We therefore compared the QT interval adaptation to rapid HR increase in patients with the long QT syndrome type 1 (LQT1) versus healthy controls because LQT1 is caused by loss-of-function mutations affecting the repolarizing potassium channel current IKs , presumably an important player in QT hysteresis. The study was performed in an outpatient hospital setting. HR was increased in LQT1 patients and controls by administering an intravenous bolus of atropine (0.04 mg/kg body weight) for 30 s. RR and QT intervals were recorded by continuous Frank vectorcardiography. Atropine induced transient expected side effects but no adverse arrhythmias. There was no difference in HR response (RR intervals) to atropine between the groups. Although atropine-induced ΔQT was 48% greater in 18 LQT1 patients than in 28 controls (p < 0.001), QT adaptation was on average 25% faster in LQT1 patients (measured as the time constant τ for the mono-exponential function and the time for 90% of ΔQT; p < 0.01); however, there was some overlap between the groups, possibly a beta-blocker effect. The shorter QT adaptation time to atropine-induced HR increase in LQT1 patients on the group level corroborates the importance of IKs in QT adaptation hysteresis in humans and shows that LQT1 patients have a disturbed ultra-rapid cardiac memory. On the individual level, the QT adaptation time possibly reflects the effect-size of the loss-of-function mutation, but its clinical implications need to be shown.


Non-neuronal, but atropine-sensitive ileal contractile responses to short-chain fatty acids: age-dependent desensitization and restoration under inflammatory conditions in mice.

  • Masako Yajima‎ et al.
  • Physiological reports‎
  • 2016‎

Intestinal epithelial cells sense short-chain fatty acids (SCFAs) to secrete non-neuronal acetylcholine (ACh). However, the roles of luminalSCFAs and epithelialACh under normal and pathological conditions remain unknown. We examined ileal contractile responses toSCFAs at different ages and their mucosal cholinergic alterations under inflammatory conditions. Ileal contractile responses toSCFAs in 1-day-old pups to 7-week-old mice were compared using an isotonic transducer, and responses to an intraperitoneal injection of lipopolysaccharide (LPS) were analyzed in 7-week-old mice. ThemRNAexpression levels of aSCFAactivate free fatty acid receptor, acetylcholinesterase (AChE), choline acetyltransferase (Chat), and choline transporter-like protein 4 (CTL4) were measured using real-time quantitativeRT-PCRAChE was analyzed by histochemical and optical enzymatic assays. Atropine-sensitive ileal contractile responses toSCFAs occurred in all 1-day-old pups, but were frequently desensitized after the weaning period. These contractile responses were not inhibited by tetrodotoxin and did not appear when the mucosal layer had been scraped off. Contractile desensitization in 7-week-old mice was abolished in the presence of theAChE inhibitor, eserine, which was consistent with increasedAChE activity after weaning. Ileal contractions toSCFAs in adult mice were restored byLPS, which significantly increased the epithelialmRNAexpression of Chat andCTL4. Atropine-sensitive ileal contractile responses toSCFAs constitutively occur in the newborn period, and are desensitized during developmental stages following the up-regulated expression ofAChE in the villous mucosa, but are restored under inflammatory conditions possibly via the release of epithelialACh.


Evaluation of blood pressure response during dobutamine stress echocardiography in patients without cardiovascular diseases.

  • Leila Bigdelu‎ et al.
  • Physiological reports‎
  • 2023‎

Dobutamine stress echocardiography (DSE) is a diagnostic tool for determining coronary artery disease. Considering hypotension and hypertension as important complications of DSE, we aimed to evaluate the blood pressure (BP) responses during DSE. Patients without known cardiovascular diseases who underwent DSE were included. We excluded patients who had hypertension, diabetes mellitus, a known history of cardiovascular diseases, and those taking vasoactive medications. Systolic (SBP) and diastolic (DBP) blood pressure were recorded at baseline and peak stress. We included 688 patients with an age of 57.9 ± 12.01 years. During DSE, SBP (+19.72 ± 26.51 mm Hg, p < 0.001), DBP (+5.52 ± 17.35 mm Hg, p < 0.001), and HR (+54.05 ± 22.45 bpm, p < 0.001) significantly increased from baseline to peak stress. The normal cut-off value was measured between 101-210 mm Hg for SBP and 50-121 mm Hg for DBP. According to this normal cutoff, 11 (1.3%) and 30 (4.4%) patients had hypotensive and hypertensive SBP and 15 (2.2%) and 21 (3.1%) patients had hypotensive and hypertensive DBP, respectively. The hypotensive response was correlated with baseline SBP (r = 0.6, p = 0.001) and atropine (r = -2.18, p = 0.043), and the hypertensive response was correlated with baseline SBP (r = 0.048, p < 0.001). Baseline BP and atropine consumption were the independent variables associated with the outside-the-normal range of blood pressure responses.


Muscarinic receptors in the rat ovary are involved in follicular development but not in steroid secretion.

  • Fernanda C Cuevas‎ et al.
  • Physiological reports‎
  • 2022‎

Acetylcholine (ACh) may be involved in the regulation of ovarian functions. A previous systemic study in rats showed that a 4-week, intrabursal local delivery of the ACh-esterase blocker Huperzine-A increased intraovarian ACh levels and changed ovarian follicular development, as evidenced by increased healthy antral follicle numbers and corpora lutea, as well as enhanced fertility. To further characterize the ovarian cholinergic system in the rat, we studied whether innervation may contribute to intraovarian ACh. We explored the cellular distribution of three muscarinic receptors (MRs; M1, M3, and M5), analyzed the involvement of MRs in ovarian steroidogenesis, and examined their roles in ovarian follicular development in normal conditions and in animals exposed to stressful conditions by employing the muscarinic antagonist, atropine. Denervation studies decreased ovarian norepinephrine, but ovarian ACh was not affected, evidencing a local, nonneuronal source of ACh. M1 was located on granulosa cells (GCs), especially in large antral follicles. M5 was associated with the ovarian vascular system and only traces of M3 were found. Ex vivo ovary organo-typic incubations showed that the MR agonist Carbachol did not modify steroid production or expression of steroid biosynthetic enzymes. Intrabursal, in vivo application of atropine (an MR antagonist) for 4 weeks, however, increased atresia of the secondary follicles. The results support the existence of an intraovarian cholinergic system in the rat ovary, located mainly in follicular GCs, which is not involved in steroid production but rather via MRs exerts trophic functions and regulates follicular atresia.


Fecal imaging demonstrates that low-methoxyl pectin supplementation normalizes gastro-intestinal transit in mice given a liquid diet.

  • Tomohiro Kagawa‎ et al.
  • Physiological reports‎
  • 2018‎

This study has the following aims: (1) to confirm a methodology for a fecal indocyanine green (ICG) imaging test for measuring gastro-intestinal transit time (GITT); and (2) to compare GITT in mice given a liquid diet in which viscosity increases under acidic conditions to that in mice given stable liquid diets with comparable viscosity or regular chow. To address Aim 1, mice received ICG orally along with intraperitoneal injection of atropine in Study 1, and mice were given ICG orally with concurrent carmine red for Study 2. Fluorescence imaging of feces collected for 8 h thereafter was used to detect the first feces with fluorescence and thereby determine GITT. To address Aim 2, mice were fed ad libitum for 1 week with either liquid diet or regular chow for Study 3, or with liquid diet containing low-methoxyl (LM) pectin or high-methoxyl (HM) pectin, or regular chow for Study 4. GITT was then determined by fecal ICG imaging. Atropine delayed GITT in a dose-dependent manner. The GITT of ICG completely corresponded to that of carmine red (correlation coefficient, 1.00). The first ICG excretion in the loose/some diarrheal feces of mice given a liquid diet was seen at 170 min. Feces of mice given liquid diet were loose with LM pectin and loose/some diarrhea with HM pectin. GITT of mice given liquid diet with HM pectin was significantly delayed (280 min) compared to that of mice given liquid diet with LM pectin (111 min) or regular chow (130 min). Fecal imaging of ICG enables measurements of GITT. LM pectin supplementation in a liquid diet may normalize GITT in mice to that of a normal meal and may be associated with changes in fecal properties.


The coherence of macrocirculation, microcirculation, and tissue metabolic response during nontraumatic hemorrhagic shock in swine.

  • Halvor Langeland‎ et al.
  • Physiological reports‎
  • 2017‎

Hemorrhagic shock is clinically observed as changes in macrocirculatory indices, while its main pathological constituent is cellular asphyxia due to microcirculatory alterations. The coherence between macro- and microcirculatory changes in different shock states has been questioned. This also applies to the hemorrhagic shock. Most studies, as well as clinical situations, of hemorrhagic shock include a "second hit" by tissue trauma. It is therefore unclear to what extent the hemorrhage itself contributes to this lack of circulatory coherence. Nine pigs in general anesthesia were exposed to a controlled withdrawal of 50% of their blood volume over 30 min, and then retransfusion over 20 min after 70 min of hypovolemia. We collected macrocirculatory variables, microcirculatory blood flow measurement by the fluorescent microspheres technique, as well as global microcirculatory patency by calculation of Pv-aCO2, and tissue metabolism measurement by the use of microdialysis. The hemorrhage led to anticipated changes in macrocirculatory variables with a coherent change in microcirculatory and metabolic variables. In the late hemorrhagic phase, the animals' variables generally improved, probably through recruitment of venous blood reservoirs. After retransfusion, all variables were normalized and remained same throughout the study period. We find in our nontraumatic model consistent coherence between changes in macrocirculatory indices, microcirculatory blood flow, and tissue metabolic response during hemorrhagic shock and retransfusion. This indicates that severe, but brief, hemorrhage with minimal tissue injury is in itself not sufficient to cause lack of coherence between macro- and microcirculation.


Oxyntomodulin increases intrinsic heart rate through the glucagon receptor.

  • Auyon Mukharji‎ et al.
  • Physiological reports‎
  • 2013‎

Two hormones from the gastrointestinal tract, glucagon and oxyntomodulin (OXM), vigorously elevate the intrinsic heart rate (IHR) of mice. We have previously shown that OXM influences murine heart rate (HR) independent of the glucagon-like peptide 1 (GLP-1) receptor. Here, we demonstrate using radiotelemetry in mice deficient in the glucagon receptor (Gcgr -/-) that both OXM and glucagon require the glucagon receptor for their chronotropic effects on the heart. Furthermore, we found that other hormones associated with hunger and satiety (ghrelin, leptin, and PYY3-36) had no effect on IHR, while cholecystokinin moderately elevated the IHR. Finally, the resting HR of Gcgr -/- mice was higher than in control mice (Gcgr +/+ and Gcgr +/-) at thermal neutral temperature (30°C). Using atropine, we demonstrated that Gcgr -/- mice have diminished parasympathetic (PNS) influence of the heart at this temperature. Gcgr -/- mice displayed a normal bradycardia as compared to controls in response to administration of either methacholine (to activate the muscarinic acetylcholine receptor) or methoxamine (to activate the baroreflex through agonism of the α1 adrenergic receptor agonist) suggesting that vagal pathways are intact in the Gcgr -/- mice. As OXM is an agonist of the GLP-1 receptor and Gcgr with antidiabetic activity, we suggest OXM may be an alternative to glucagon in the treatment of overdose of beta-blockers to elevate HR in clinical conditions.


Role played by periaqueductal gray neurons in parasympathetically mediated fear bradycardia in conscious rats.

  • Satoshi Koba‎ et al.
  • Physiological reports‎
  • 2016‎

Freezing, a characteristic pattern of defensive behavior elicited by fear, is associated with a decrease in the heart rate. Central mechanisms underlying fear bradycardia are poorly understood. The periaqueductal gray (PAG) in the midbrain is known to contribute to autonomic cardiovascular adjustments associated with various emotional behaviors observed during active or passive defense reactions. The purpose of this study was to elucidate the role played by PAG neurons in eliciting fear bradycardia. White noise sound (WNS) exposure at 90 dB induced freezing behavior and elicited bradycardia in conscious rats. The WNS exposure-elicited bradycardia was mediated parasympathetically because intravenous administration of atropine abolished the bradycardia (P < 0.05). Moreover, WNS exposure-elicited bradycardia was mediated by neuronal activation of the lateral/ventrolateral PAG (l/vlPAG) because bilateral microinjection of muscimol, a GABAA agonist, into the l/vlPAG significantly suppressed the bradycardia. It is noted that muscimol microinjected bilaterally into the dorsolateral PAG had no effect on WNS exposure-elicited bradycardia. Furthermore, retrograde neuronal tracing experiments combined with immunohistochemistry demonstrated that a number of l/vlPAG neurons that send direct projections to the nucleus ambiguus (NA) in the medulla, a major origin of parasympathetic preganglionic neurons to the heart, were activated by WNS exposure. Based on these findings, we propose that the l/vlPAG-NA monosynaptic pathway transmits fear-driven central signals, which elicit bradycardia through parasympathetic outflow.


Subtotal nephrectomy inhibits the gastric emptying of liquid in awake rats.

  • José Ronaldo Vasconcelos da Graça‎ et al.
  • Physiological reports‎
  • 2015‎

Homeostasis of blood volume (BV) is attained through a functional interaction between the cardiovascular and renal systems. The gastrointestinal tract also adjusts its permeability and motor behavior after acute BV imbalances. We evaluated the effect of progressive nephron loss on gut motility. Male Wistar rats were subjected or not (sham) to 5/6 partial nephrectomy (PNX) in two steps (0 and 7th day). After further 3, 7, or 14 days, PNX and sham operation (control) rats were instrumented to monitor mean arterial pressure (MAP), central venous pressure (CVP), heart rate (HR), and blood collection for biochemical analysis. The next day, they were gavage fed with a liquid test meal (phenol red in glucose solution), and fractional dye recovery determined 10, 20, or 30 min later. The effect of nonhypotensive hypovolemia and the role of neuroautonomic pathways on PNX-induced gastric emptying (GE) delay were also evaluated. Compared with the sham-operated group, PNX rats exhibited higher (P < 0.05) MAP and CVP values as well as increased values of gastric dye recovery, phenomenon proportional to the BV values. Gastric retention was prevented by prior hypovolemia, bilateral subdiaphragmatic vagotomy, coelic ganglionectomy + splanchnicectomy, guanethidine, or atropine pretreatment. PNX also inhibited (P < 0.05) the marker's progression through the small intestine. In anesthetized rats, PNX increased (P < 0.05) gastric volume, measured by a balloon catheter in a barostat system. In conclusion, the progressive loss of kidney function delayed the GE rate, which may contribute to gut dysmotility complaints associated with severe renal failure.


Simvastatin provides long-term improvement of left ventricular function and prevents cardiac fibrosis in muscular dystrophy.

  • Min J Kim‎ et al.
  • Physiological reports‎
  • 2019‎

Duchenne muscular dystrophy (DMD), caused by absence of the protein dystrophin, is a common, degenerative muscle disease affecting 1:5000 males worldwide. With recent advances in respiratory care, cardiac dysfunction now accounts for 50% of mortality in DMD. Recently, we demonstrated that simvastatin substantially improved skeletal muscle health and function in mdx (DMD) mice. Given the known cardiovascular benefits ascribed to statins, the aim of this study was to evaluate the efficacy of simvastatin on cardiac function in mdx mice. Remarkably, in 12-month old mdx mice, simvastatin reversed diastolic dysfunction to normal after short-term treatment (8 weeks), as measured by echocardiography in animals anesthetized with isoflurane and administered dobutamine to maintain a physiological heart rate. This improvement in diastolic function was accompanied by increased phospholamban phosphorylation in simvastatin-treated mice. Echocardiography measurements during long-term treatment, from 6 months up to 18 months of age, showed that simvastatin significantly improved in vivo cardiac function compared to untreated mdx mice, and prevented fibrosis in these very old animals. Cardiac dysfunction in DMD is also characterized by decreased heart rate variability (HRV), which indicates autonomic function dysregulation. Therefore, we measured cardiac ECG and demonstrated that short-term simvastatin treatment significantly increased heart rate variability (HRV) in 14-month-old conscious mdx mice, which was reversed by atropine. This finding suggests that enhanced parasympathetic function is likely responsible for the improved HRV mediated by simvastatin. Together, these findings indicate that simvastatin markedly improves cardiac health and function in dystrophic mice, and therefore may provide a novel approach for treating cardiomyopathy in DMD.


Long-term spinal cord stimulation modifies canine intrinsic cardiac neuronal properties and ganglionic transmission during high-frequency repetitive activation.

  • Frank M Smith‎ et al.
  • Physiological reports‎
  • 2016‎

Long-term spinal cord stimulation (SCS) applied to cranial thoracic SC segments exerts antiarrhythmic and cardioprotective actions in the canine heart in situ. We hypothesized that remodeling of intrinsic cardiac neuronal and synaptic properties occur in canines subjected to long-term SCS, specifically that synaptic efficacy may be preferentially facilitated at high presynaptic nerve stimulation frequencies. Animals subjected to continuous SCS for 5-8 weeks (long-term SCS: n = 17) or for 1 h (acute SCS: n = 4) were compared with corresponding control animals (long-term: n = 15, acute: n = 4). At termination, animals were anesthetized, the heart was excised and neurones from the right atrial ganglionated plexus were identified and studied in vitro using standard intracellular microelectrode technique. Main findings were as follows: (1) a significant reduction in whole cell membrane input resistance and acceleration of the course of AHP decay identified among phasic neurones from long-term SCS compared with controls, (2) significantly more robust synaptic transmission to rundown in long-term SCS during high-frequency (10-40 Hz) presynaptic nerve stimulation while recording from either phasic or accommodating postsynaptic neurones; this was associated with significantly greater posttrain excitatory postsynaptic potential (EPSP) numbers in long-term SCS than control, and (3) synaptic efficacy was significantly decreased by atropine in both groups. Such changes did not occur in acute SCS In conclusion, modification of intrinsic cardiac neuronal properties and facilitation of synaptic transmission at high stimulation frequency in long-term SCS could improve physiologically modulated vagal inputs to the heart.


Subdiaphragmatic vagus nerve activity and hepatic venous glucose are differentially regulated by the central actions of insulin in Wistar and SHR.

  • Izabela Martina R Ribeiro‎ et al.
  • Physiological reports‎
  • 2015‎

Glucose is the most important energy substrate for the maintenance of tissues function. The liver plays an essential role in the control of glucose production, since it is able to synthesize, store, and release glucose into the circulation under different situations. Hormones like insulin and catecholamines influence hepatic glucose production (HGP), but little is known about the role of the central actions of physiological doses of insulin in modulating HGP via the autonomic nervous system in nonanesthetized rats especially in SHR where we see a high degree of insulin resistance and metabolic dysfunction. Wistar and SHR received ICV injection of insulin (100 nU/μL) and hepatic venous glucose concentration (HVGC) was monitored for 30 min, as an indirect measure of HGP. At 10 min after insulin injection, HVGC decreased by 27% in Wistar rats, with a negligible change (3%) in SHR. Pretreatment with atropine totally blocked the reduction in HVGC, while pretreatment with propranolol and phentolamine induced a decrease of 8% in HVGC after ICV insulin injection in Wistar. Intracarotid infusion of insulin caused a significant increase in subdiaphragmatic vagus nerve (SVN) activity in Wistar (12 ± 2%), with negligible effects on the lumbar splanchnic sympathetic nerve (LSSN) activity (-6 ± 3%). No change was observed in SVN (-2 ± 2%) and LSSN activities (2 ± 3%) in SHR after ICA insulin infusion. Taken together, these results show, in nonanesthetized animals, the importance of the parasympathetic nervous system in controlling HVGC, and subdiaphragmatic nerve activity following central administration of insulin; a mechanism that is impaired in the SHR.


Cardiac adaptation to high altitude in the plateau pika (Ochotona curzoniae).

  • Aurélien Pichon‎ et al.
  • Physiological reports‎
  • 2013‎

The aim of this study was to assess maximal heart rate (HR) and heart morphological changes in high altitude living "plateau pikas" and rats bred at 2260 m. Rats and pikas were catheterized to measure HR (2260 m). After baseline measurements, 1 mg/kg of atropine (AT) and increasing doses of isoproterenol (IsoP) (0.1, 1, 10, and 100 μg kg) were injected into animals. Right (RV) and left ventricles (LV) were removed to calculate Fulton's ratio (LV + septum (S) to RV weights) and to assess mRNA expression level of β1- and β2-adrenoceptors, muscarinic m1 and m2 receptors, and vascular endothelial growth factor (VEGF). Resting HR was significantly lower in rats than in pikas and increased after AT injection only in rats. IsoP injection induced a significant increase in HR in rat for all doses, which was systematically greater than in pikas. In pikas HR was slightly increased only after the two highest concentrations of IsoP. Fulton's ratio was greater in rats compared with pikas but the LV + S adjusted for body weight was greater in pikas. Pikas showed lower β1-adrenoceptors and muscarinic m2 receptors mRNA expression but larger VEGF mRNA expression than rats both in RV and LV. These results suggest that pikas have a lower maximal HR compared with rats certainly due to a decrease in β-adrenergic and muscarinic receptors mRNA expression. However, the LV hypertrophy probably led to an increase in stroke volume to maintain cardiac output in response to the cold and hypoxic environment.


Mouse ECG findings in aging, with conduction system affecting drugs and in cardiac pathologies: Development and validation of ECG analysis algorithm in mice.

  • Mari Merentie‎ et al.
  • Physiological reports‎
  • 2015‎

Mouse models are extremely important in studying cardiac pathologies and related electrophysiology, but very few mouse ECG analysis programs are readily available. Therefore, a mouse ECG analysis algorithm was developed and validated. Surface ECG (lead II) was acquired during transthoracic echocardiography from C57Bl/6J mice under isoflurane anesthesia. The effect of aging was studied in young (2-3 months), middle-aged (14 months) and old (20-24 months) mice. The ECG changes associated with pharmacological interventions and common cardiac pathologies, that is, acute myocardial infarction (AMI) and progressive left ventricular hypertrophy (LVH), were studied. The ECG raw data were analyzed with an in-house ECG analysis program, modified specially for mouse ECG. Aging led to increases in P-wave duration, atrioventricular conduction time (PQ interval), and intraventricular conduction time (QRS complex width), while the R-wave amplitude decreased. In addition, the prevalence of arrhythmias increased during aging. Anticholinergic atropine shortened PQ time, and beta blocker metoprolol and calcium-channel blocker verapamil increased PQ interval and decreased heart rate. The ECG changes after AMI included early JT elevation, development of Q waves, decreased R-wave amplitude, and later changes in JT/T segment. In progressive LVH model, QRS complex width was increased at 2 and especially 4 weeks timepoint, and also repolarization abnormalities were seen. Aging, drugs, AMI, and LVH led to similar ECG changes in mice as seen in humans, which could be reliably detected with this new algorithm. The developed method will be very useful for studies on cardiovascular diseases in mice.


The effect of Xenin25 on spontaneous circular muscle contractions of rat distal colon in vitro.

  • Yuko Kuwahara‎ et al.
  • Physiological reports‎
  • 2021‎

Xenin25 has a variety of physiological functions in the Gastrointestinal (GI) tract, including ion transport and motility. However, the motility responses in the colon induced by Xenin25 remain poorly understood. Therefore, the effect of Xenin25 on the spontaneous circular muscle contractions of the rat distal colon was investigated using organ bath chambers and immunohistochemistry. Xenin25 induced the inhibition followed by postinhibitory spontaneous contractions with a higher frequency in the rat distal colon. This inhibitory effect of Xenin25 was significantly suppressed by TTX but not by atropine. The inhibitory time (the duration of inhibition) caused by Xenin25 was shortened by the NTSR1 antagonist SR48692, the NK1R antagonist CP96345, the VPAC2 receptor antagonist PG99-465, the nitric oxide-sensitive guanylate-cyclase inhibitor ODQ, and the Ca2+ -dependent K+ channel blocker apamin. The higher frequency of postinhibitory spontaneous contractions induced by Xenin25 was also attenuated by ODQ and apamin. SP-, NOS-, and VIP-immunoreactive neurons were detected in the myenteric plexus (MP) of the rat distal colon. Small subsets of the SP-positive neurons were also Calbindin positive. Most of the VIP-positive neurons were also NOS positive, and small subsets of the NK1R-positive neurons were also VIP positive. Based on the present results, we propose the following mechanism. Xenin25 activates neuronal NTSR1 on the SP neurons of IPANs, and transmitters from the VIP and apamin-sensitive NO neurons synergistically inhibit the spontaneous circular muscle contractions via NK1R. Subsequently, the postinhibitory spontaneous contractions are induced by the offset of apamin-sensitive NO neuron activation via the interstitial cells of Cajal. In addition, Xenin25 also activates the muscular NTSR1 to induce relaxation. Thus, Xenin25 is considered to be an important modulator of post prandial circular muscle contraction of distal colon since the release of Xenin25 from enteroendocrine cells is stimulated by food intake.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: