Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Non-neuronal, but atropine-sensitive ileal contractile responses to short-chain fatty acids: age-dependent desensitization and restoration under inflammatory conditions in mice.

  • Masako Yajima‎ et al.
  • Physiological reports‎
  • 2016‎

Intestinal epithelial cells sense short-chain fatty acids (SCFAs) to secrete non-neuronal acetylcholine (ACh). However, the roles of luminalSCFAs and epithelialACh under normal and pathological conditions remain unknown. We examined ileal contractile responses toSCFAs at different ages and their mucosal cholinergic alterations under inflammatory conditions. Ileal contractile responses toSCFAs in 1-day-old pups to 7-week-old mice were compared using an isotonic transducer, and responses to an intraperitoneal injection of lipopolysaccharide (LPS) were analyzed in 7-week-old mice. ThemRNAexpression levels of aSCFAactivate free fatty acid receptor, acetylcholinesterase (AChE), choline acetyltransferase (Chat), and choline transporter-like protein 4 (CTL4) were measured using real-time quantitativeRT-PCRAChE was analyzed by histochemical and optical enzymatic assays. Atropine-sensitive ileal contractile responses toSCFAs occurred in all 1-day-old pups, but were frequently desensitized after the weaning period. These contractile responses were not inhibited by tetrodotoxin and did not appear when the mucosal layer had been scraped off. Contractile desensitization in 7-week-old mice was abolished in the presence of theAChE inhibitor, eserine, which was consistent with increasedAChE activity after weaning. Ileal contractions toSCFAs in adult mice were restored byLPS, which significantly increased the epithelialmRNAexpression of Chat andCTL4. Atropine-sensitive ileal contractile responses toSCFAs constitutively occur in the newborn period, and are desensitized during developmental stages following the up-regulated expression ofAChE in the villous mucosa, but are restored under inflammatory conditions possibly via the release of epithelialACh.


The effects of intra-stomach obestatin administration on intestinal contractility in neonatal piglets fed milk formula.

  • Monika Słupecka-Ziemilska‎ et al.
  • PloS one‎
  • 2020‎

A 23-amino acid peptide named obestatin is derived from the ghrelin gene. The aim of the experiment was to study the effects of enteral obestatin administration for a 6-day period on intestinal contractility in piglets fed milk formula. Pigs were treated with 0.9% NaCl (group C) or varying doses of obestatin: 2 μg/kg body weight (BW) (group O2), 10 μg/kg BW (O10) or 15 μg/kg BW (O15) every 8 hours via a stomach tube. Blood was sampled for assessment of obestatin concentration. Duodenal and middle jejunum whole-thickness preparations were studied in an organ bath for isometric recording under electric field stimulation (EFS) and increasing doses of acetylcholine (ACh), and in the presence of atropine and tetrodotoxin (TTX). Additionally, the measurement of intestinal muscularis layer and the immunodetection of Muscarinic Acetylcholine Receptors (M1 and M2) were performed. In comparison to C animals, the obestatin concentration in blood plasma was significantly increased in groups O10 and O15. In both studied intestinal segments, significant increases in the frequency and amplitude of spontaneous contractions were observed in O15 and C groups. In the duodenum and middle jejunum significant differences in responsiveness to EFS (0.5, 5 and 50 Hz) were observed between the groups. The addition of 10-4 M ACh to the duodenum significantly increased the responsiveness in tissues. In contrast, in the middle jejunum a significant increase in the amplitude of contraction was observed after the addition of 10-9 and 10-6 M ACh (groups O15 and O10, respectively). Pretreatment with atropine and TTX resulted in a significant decrease in the responsiveness of the intestinal preparations from all groups, in both studied segments. The increased contractility was not dependent on the expression of muscarinic receptors. Results indicate the importance of enteral obestatin administration in the regulation of intestinal contractility in neonatal piglets.


Activation of muscarinic cholinoceptor ameliorates tumor necrosis factor-α-induced barrier dysfunction in intestinal epithelial cells.

  • Md Rafiqul Islam Khan‎ et al.
  • FEBS letters‎
  • 2015‎

Impaired intestinal barrier function is one of the critical issues in inflammatory bowel diseases. The aim of this study is to investigate muscarinic cholinoceptor (mAChR)-mediated signaling for the amelioration of cytokine-induced barrier dysfunction in intestinal epithelium. Rat colon challenged with TNF-α and interferon γ reduced transepithelial electrical resistance (TER). This barrier injury was attenuated by muscarinic stimulation. In HT-29/B6 intestinal epithelial cells, muscarinic stimulation suppressed TNF-α-induced activation of NF-κB signaling and barrier disruption. Finally, muscarinic stimulation promoted the shedding of TNFR1, which would be a mechanism for the attenuation of TNF-α/NF-κB signaling and barrier disruption via mAChR.


The effect of Xenin25 on spontaneous circular muscle contractions of rat distal colon in vitro.

  • Yuko Kuwahara‎ et al.
  • Physiological reports‎
  • 2021‎

Xenin25 has a variety of physiological functions in the Gastrointestinal (GI) tract, including ion transport and motility. However, the motility responses in the colon induced by Xenin25 remain poorly understood. Therefore, the effect of Xenin25 on the spontaneous circular muscle contractions of the rat distal colon was investigated using organ bath chambers and immunohistochemistry. Xenin25 induced the inhibition followed by postinhibitory spontaneous contractions with a higher frequency in the rat distal colon. This inhibitory effect of Xenin25 was significantly suppressed by TTX but not by atropine. The inhibitory time (the duration of inhibition) caused by Xenin25 was shortened by the NTSR1 antagonist SR48692, the NK1R antagonist CP96345, the VPAC2 receptor antagonist PG99-465, the nitric oxide-sensitive guanylate-cyclase inhibitor ODQ, and the Ca2+ -dependent K+ channel blocker apamin. The higher frequency of postinhibitory spontaneous contractions induced by Xenin25 was also attenuated by ODQ and apamin. SP-, NOS-, and VIP-immunoreactive neurons were detected in the myenteric plexus (MP) of the rat distal colon. Small subsets of the SP-positive neurons were also Calbindin positive. Most of the VIP-positive neurons were also NOS positive, and small subsets of the NK1R-positive neurons were also VIP positive. Based on the present results, we propose the following mechanism. Xenin25 activates neuronal NTSR1 on the SP neurons of IPANs, and transmitters from the VIP and apamin-sensitive NO neurons synergistically inhibit the spontaneous circular muscle contractions via NK1R. Subsequently, the postinhibitory spontaneous contractions are induced by the offset of apamin-sensitive NO neuron activation via the interstitial cells of Cajal. In addition, Xenin25 also activates the muscular NTSR1 to induce relaxation. Thus, Xenin25 is considered to be an important modulator of post prandial circular muscle contraction of distal colon since the release of Xenin25 from enteroendocrine cells is stimulated by food intake.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: