Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Development of Cancer in Patients With Heart Failure: How Systemic Inflammation Can Lay the Groundwork.

  • Simonetta Ausoni‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2020‎

In the last decade, cardiologists and oncologists have provided clinical and experimental evidence that cancer, and not only chemotherapeutic agents, can cause detrimental effects on heart structure and function, a consequence that has serious clinical implications for patient management. In parallel, the intriguing idea that heart failure (HF) may be an oncogenic condition has also received growing attention. A number of epidemiological and clinical studies have reported that patients with HF have a higher risk of developing cancer. Chronic low-grade systemic inflammation has been proposed as a major pathophysiological process linking the failing heart to the multi-step process of carcinogenesis. According to this view, pro-inflammatory mediators secreted by the damaged heart generate a favorable milieu that promotes tumor development and accelerates malignant transformation. HF-associated inflammation synergizes with tumor-associated inflammation, so that over time it is no longer possible to distinguish the effects of one or the other. Experimental studies have just begun to search for the molecular effectors of this process, with the ultimate goal that of identifying mechanisms suitable for anti-cancer target therapy to reduce the risk of incident cancer in patients already affected by HF. In this review we critically discuss strengths and limitations of clinical and experimental studies that support a causal relationship between HF and cancer, and focus on HF-associated inflammation, cardiokines and their endocrine functions linking one and the other disease.


Programmed Exercise Attenuates Familial Hypertrophic Cardiomyopathy in Transgenic E22K Mice via Inhibition of PKC-α/NFAT Pathway.

  • Haiying Wang‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2022‎

Familial hypertrophic cardiomyopathy (FHCM), an autosomal dominant disease, is caused by mutations in genes encoding cardiac sarcomeric proteins. E22K, a mutation in the myosin regulatory light chain sarcomere gene, is associated with the development of FHCM. However, the molecular mechanisms by which E22K mutation promotes septal hypertrophy are still elusive. The hypertrophic markers, including beta-myosin heavy chain, atrial natriuretic peptide and B-type natriuretic peptide, were upregulated, as detected by fluorescence quantitative PCR. The gene expression profiles were greatly altered in the left ventricle of E22K mutant mice. Among these genes, nuclear factor of activated T cells (NFAT) and protein kinase C-alpha (PKC-α) were upregulated, and their protein expression levels were also verified to be elevated. The fibrosis markers, such as phosphorylated Smad and transforming growth factor beta receptor, were also elevated in transgenic E22K mice. After receiving 6 weeks of procedural exercise training, the expression levels of PKC-α and NFAT were reversed in E22K mouse hearts. In addition, the expression levels of several fibrosis-related genes such as transforming growth factor beta receptor 1, Smad4, and alpha smooth muscle actin in E22K mouse hearts were also reversed. Genes that associated with cardiac remodeling such as myocyte enhancer factor 2C, extracellular matrix protein 2 and fibroblast growth factor 12 were reduced after exercising. Taken together, our results indicate that exercise can improve hypertrophy and fibrosis-related indices in transgenic E22K mice via PKC-α/NFAT pathway, which provide new insight into the prevention and treatment of familial hypertrophic cardiomyopathy.


The history and mystery of sacubitril/valsartan: From clinical trial to the real world.

  • Mingsong Zhang‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2023‎

Heart failure is a serious threat to human health, with morbidity and mortality rates increasing despite the existence of multiple treatment options. Therefore, it is necessary to identify new therapeutic targets for this disease. Sacubitril/valsartan is a supramolecular sodium salt complex of the enkephalinase inhibitor prodrug sacubitril and the angiotensin receptor blocker valsartan. Its combined action increases endogenous natriuretic peptides while inhibiting the renin-angiotensin-aldosterone system and exerting cardioprotective effects. Clinical evidence suggests that sacubitril/valsartan is superior to conventional renin-angiotensin-aldosterone inhibitor therapy for patients with reduced ejection fraction heart failure who can tolerate angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers. The therapy reduces the risk of heart failure hospitalization, cardiovascular mortality, and all-cause mortality and has a better safety and tolerability record. This review describes the potential pathophysiological mechanisms of cardiomyocyte injury amelioration by sacubitril/valsartan. We explore the protective effects of sacubitril/valsartan and outline the therapeutic value in patients with heart failure by summarizing the results of recent large clinical trials. Furthermore, a preliminary outlook shows that sacubitril/valsartan may be effective at treating other diseases, and provides some exploratory observations that lay the foundation for future studies on this drug.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: