Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Aspirin inhibits prostaglandins to prevents colon tumor formation via down-regulating Wnt production.

  • Yaqian Feng‎ et al.
  • European journal of pharmacology‎
  • 2021‎

According to numerous epidemiological studies, aspirin is a non-steroidal anti-inflammatory drug (NSAID) that reduces the occurrence and mortality of colorectal cancer (CRC). However, the underlying mechanisms are not well identified. In an effort to fill these gaps, we administered aspirin on mice one day before induction in an azoxymethane (AOM)/dextran sulfate sodium (DSS) induced CRC model. In this study, we assessed the effects of aspirin on tumorigenesis and tumor cell proliferation. Multi-layer analyses were carried out to identify changes in cytokines, metabolites, level of gene expressions, and proteins associated with tumorigenesis and aspirin treatment. The results showed that aspirin-treated mice developed fewer colon tumors in response to AOM/DSS, and aspirin can actively block cyclooxygenase (COX) metabolism and reduce levels of pro-inflammatory cytokines. In addition, the transcriptomic and proteomic analyses both indicated that aspirin has an inhibitory effect on the Wnt pathway. The in vitro results further indicated that aspirin inhibits WNT6 production, possibly by suppressing its transcription factor NR4A2, which in turn is regulated by prostaglandin E2, thereby ultimately inhibiting the Wnt pathway. These findings improve our understanding of the mechanisms behind aspirin's chemoprevention effect on CRC.


Aspirin ameliorates pulmonary vascular remodeling in pulmonary hypertension by dampening endothelial-to-mesenchymal transition.

  • Ning Huang‎ et al.
  • European journal of pharmacology‎
  • 2021‎

Pulmonary vascular remodeling (PVR) is the pathological basis of pulmonary hypertension (PH). Incomplete understanding of PVR etiology has hindered drug development for this devastating disease, which exhibits poor prognosis despite the currently available therapies. Endothelial-to-mesenchymal transition (EndMT), a process of cell transdifferentiation, has been recently implicated in cardiovascular diseases, including PH. But the questions of how EndMT occurs and how to pharmacologically target EndMT in vivo have yet to be further answered. Herein, by performing hematoxylin-eosin and immunofluorescence staining, transmission electron microscopy and Western blotting, we found that EndMT plays a key role in the pathogenesis of PH, and importantly that aspirin, a FDA-approved widely used drug, was capable of ameliorating PVR in a preclinical rat model of hypoxia-induced PH. Moreover, aspirin exerted its inhibitory effects on EndMT in vitro and in vivo by suppressing HIF-1α/TGF-β1/Smads/Snail signaling pathway. Our data suggest that EndMT represents an intriguing drug target for the prevention and treatment of hypoxic PH and that aspirin may be repurposed to meet the urgent therapeutic needs of hypoxic PH patients.


Effects of aspirin-triggered resolvin D1 on peripheral blood mononuclear cells from patients with Chagas' heart disease.

  • Haline Ogata‎ et al.
  • European journal of pharmacology‎
  • 2016‎

Chagas disease is caused by Trypanosoma cruzi (T. cruzi). In some patients with Chagas disease, symptoms progress to chronic chagasic cardiomyopathy. Endogenously, inflammation is resolved in the presence of lipid mediators such as aspirin-triggered RvD1 (AT-RvD1) which has anti-inflammatory and pro-resolution effects. Here, we demonstrated, for the first time, the effects of AT-RvD1 on T. cruzi antigen-stimulated peripheral blood mononuclear cells (PBMCs) from patients with Chagas heart disease. The levels of IFN-γ, TNF-α, IL-10, and IL-13 increased in PBMCs from cardiac-form Chagas patients in stage B1 (patients with fewer heart abnormalities) stimulated with T. cruzi antigen compared to those in non-stimulated PBMCs. AT-RvD1 reduced the IFN-γ concentrations in PBMCs from patients with Chagas disease stimulated with T. cruzi antigen compared to stimulated with T. cruzi antigen cells. AT-RvD1 treatment resulted in no observable changes in TNF-α, IL-10, and IL-13 levels. AT-RvD1 significantly decreased the percentage of necrotic cells and caused a significant reduction in the proliferation rate of T. cruzi antigen-stimulated PBMCs from patients with Chagas disease. These findings demonstrate that AT-RvD1 modulates the immune response in Chagas disease patients and might have potential to be used as an alternative approach for slowing the development of further heart damage.


Relevance of the cyclophosphamide-induced cystitis model for pharmacological studies targeting inflammation and pain of the bladder.

  • Céline Augé‎ et al.
  • European journal of pharmacology‎
  • 2013‎

This work aimed at establishing the relevance of using the in vivo model of cyclophosphamide (CYP)-induced bladder inflammation in rats for in vivo pharmacological studies. Specifically, we measured visceral nociception, identified key inflammatory mediators and evaluated the effects of relevant pharmacological treatments. Cystitis was induced in female rats by a single CYP injection. Sensitivity of the lower abdomen to von Frey mechanical stimulation was determined as a nociceptive parameter. Bladders were assessed for weight, wall thickness and macroscopic damage. Inflammatory mediators were quantified in bladders and urines. The effects of aspirin, ibuprofen and morphine were investigated on all these parameters. A single CYP injection increased nociceptive scores and decreased nociceptive threshold in response to mechanical stimuli between 1 and 4h post-administration. Increased bladder weight and wall thickness were associated with edema and hemorrhage. Bladder levels of IL-1β, IL-6, MCP-1 and VCAM, and urinary levels of PGE2 were increased. In contrast, a decrease in the urinary metabolites, indoxyl sulfate and pantothenic acid, was observed. Aspirin, ibuprofen and morphine decreased CYP-induced referred visceral pain. Aspirin and ibuprofen also reversed the increased wall thickness, macroscopic damage and levels of IL-1β, IL-6 and PGE2, and the decreased panthotenic acid levels. In contrast, morphine increased wall thickness, edema, hemorrhage, and bladder IL-6 and MCP-1 levels. This work presents a new and reliable method to evaluate visceral sensitivity in rats, and new relevant biomarkers identified in the bladder and urine to measure inflammation and pain parameters for in vivo pharmacological studies.


Prostaglandin H synthase-2 inhibitors interfere with prostaglandin H synthase-1 inhibition by nonsteroidal anti-inflammatory drugs.

  • M Rosenstock‎ et al.
  • European journal of pharmacology‎
  • 2001‎

Ram seminal vesicle microsomes, a rich source of prostaglandin H synthase-1, were incubated with 100 nM of the prostaglandin H synthase-2 inhibitors N-(2-cyclohexyloxy-4-nitrophenyl) methanesulfonamide (NS-398) and 5-bromo-2-(4-fluorophenyl)-3-(4-methylsulfonyl) thiophene (DuP-697) prior to exposure to the prostaglandin H synthase inhibitors aspirin, indomethacin, ibuprofen or naproxen. Activity of the enzyme was measured by following the conversion of arachidonic acid to prostaglandin E(2) and prostaglandin F2alpha. Although prostaglandin H synthase-1 activity was not altered by these concentrations of the prostaglandin H synthase-2 inhibitors, it was found that exposure to these agents prior to aspirin or indomethacin (irreversible prostaglandin H synthase inhibitors) significantly attenuated the inhibition obtained by the latter inhibitors. On the other hand, the same concentrations of the prostaglandin H synthase-2 inhibitors did not interfere with prostaglandin H synthase-1 inhibition that was induced by naproxen or ibuprofen (competitive prostaglandin H synthase inhibitors). Attenuation of the indomethacin inhibition of prostaglandin H synthase-1 by prostaglandin H synthase-2 inhibitors was observed only when the microsomes were pre-exposed to DuP-697 or NS-398 in the absence, but not in the presence, of arachidonic acid. The effect of DuP-697 was found to be irreversible, however, washing away the agent reversed the action of NS-398. Similar phenomena have been reported by us in bovine aortic endothelial cells and in human dermal fibroblasts. Attenuation of the inhibition by aspirin and indomethacin, without altering the enzyme's basal activity or the inhibition induced by ibuprofen or naproxen may suggest the possibility that the prostaglandin H synthase-2 specific inhibitors DuP-697 and NS-398 affect prostaglandin H synthase-1 by interaction with a site different from the enzyme's catalytic site.


Acetylsalicylic acid-induced oxidative stress, cell cycle arrest, apoptosis and mitochondrial dysfunction in human hepatoma HepG2 cells.

  • Haider Raza‎ et al.
  • European journal of pharmacology‎
  • 2011‎

It is widely accepted that non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin, reduce the risk of cancer. The anti-cancer and anti-inflammatory effects of NSAIDs are associated with the inhibition of prostaglandin synthesis and cyclooxygenase-2 activity. Several other mechanisms which contribute to the anti-cancer effect of these drugs in different cancer models both in vivo and in vitro are also presumed to be involved. The precise molecular mechanism, however, is still not clear. We investigated, therefore, the effects of acetylsalicylic acid (ASA, aspirin) on multiple cellular and functional targets, including mitochondrial bioenergetics, using human hepatoma HepG2 cancer cells in culture. Our results demonstrate that ASA induced G0/G1 cell cycle arrest and apoptosis in HepG2 cells. ASA increased the production of reactive oxygen species, reduced the cellular glutathione (GSH) pool and inhibited the activities of the mitochondrial respiratory enzyme complexes, NADH-ubiquinone oxidoreductase (complex I), cytochrome c oxidase (complex IV) and the mitochondrial matrix enzyme, aconitase. Apoptosis was triggered by alteration in mitochondrial permeability transition, inhibition of ATP synthesis, decreased expression of the anti-apoptotic protein Bcl-2, release of cytochrome c and activation of pro-apoptotic caspase-3 and the DNA repairing enzyme, poly (-ADP-ribose) polymerase (PARP). These findings strongly suggest that ASA-induced toxicity in human hepatoma HepG2 cells is mediated by increased metabolic and oxidative stress, accompanied by mitochondrial dysfunction which result in apoptosis.


AMP-activated protein kinase is activated by non-steroidal anti-inflammatory drugs.

  • Tanya S King‎ et al.
  • European journal of pharmacology‎
  • 2015‎

AMP-activated kinase (AMPK) is a cellular energy sensor, which is activated in stages of increased adenosine triphosphate (ATP) consumption. Its activation has been associated with a number of beneficial effects such as decrease of inflammatory processes and inhibition of disease progression of diabetes and obesity. A recent study suggested that salicylate, the active metabolite of the non-steroidal anti-inflammatory drug (NSAID) acetyl-salicylic acid (aspirin), is able to activate AMPK pharmacologically. This observation raised the question whether or not other NSAIDs might also act as AMPK activators and whether this action might contribute to their cyclooxygenase (COX)-independent anti-inflammatory properties. In this study, we investigated mouse and human neuronal cells and liver tissue of mice after treatment with various NSAIDs. Our results showed that the non-selective acidic NSAIDs ibuprofen and diclofenac induced AMPK activation similar to aspirin while the COX-2 selective drug etoricoxib and the non-opioid analgesic paracetamol, both drugs have no acidic structure, failed to activate AMPK. In conclusion, our results revealed that AMPK can be activated by specific non-steroidal anti-inflammatory drugs such as salicylic acid, ibuprofen or diclofenac possibly depending on the acidic structure of the drugs. AMPK might therefore contribute to their antinociceptive and anti-inflammatory properties.


Prostaglandin D2 generation from human lung mast cells is catalysed exclusively by cyclooxygenase-1.

  • Bandar K Baothman‎ et al.
  • European journal of pharmacology‎
  • 2018‎

Mast cells are an exceptionally rich source of prostaglandin D2 (PGD2). PGD2 is pro-inflammatory and can cause bronchoconstriction. The enzyme cyclooxygenase (COX) is central to the generation of prostanoids such as PGD2. Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX. COX exists as two isoforms, COX-1 and COX-2. The principal aim of this study was to establish whether COX-1 and/or COX-2 mediates PGD2 generation from human lung mast cells. Mast cells were isolated from human lung tissue and purified by flotation over Percoll and immunomagnetic bead separations. The cells were activated with anti-IgE or Stem Cell Factor (SCF). The generation of PGD2 was determined by ELISA. The effects of NSAIDs (aspirin, ibuprofen, diclofenac, naproxen, indomethacin), COX-1 selective (FR122047), and COX-2 selective (celecoxib) inhibitors on PGD2 generation were determined. The expression of COX-1 and COX-2 in mast cells was determined by Western blotting. All the NSAIDs tested abrogated stimulated PGD2 generation from mast cells except aspirin which was only weakly effective. FR122047 was an effective inhibitor of PGD2 generation (EC50 ~25nM) from mast cells whereas celecoxib was ineffective. Immunoblotting indicated that COX-1 was strongly expressed in all mast cell preparations while COX-2 expression was weak. No induction of COX-2 was observed following activation of mast cells. These findings indicate that COX-1 is the principal isoform involved in generating PGD2 from human lung mast cells. These studies provide insight into the potential behaviour of NSAIDs in the context of respiratory diseases.


Ponatinib-induced ischemic stroke in larval zebrafish for drug screening.

  • Xiao-Yu Zhu‎ et al.
  • European journal of pharmacology‎
  • 2020‎

Conventional mammalian ischemic stroke models for drug screening are technically challenging, laborious and time-consuming. In this study, using Ponatinib as an inducer, we developed and characterized a zebrafish ischemic stroke model. This zebrafish ischemic stroke had the cerebral vascular endothelial injury, thrombosis, reduced blood flow, inflammation and apoptosis as well as the reduced motility. The zebrafish ischemic stroke model was validated with 6 known human therapeutic drugs of ischemic stroke (Aspirin, Clopidogrel, Naoxintong capsules, Edaravone, Xingnaojing injection, Shuxuening injection). The mRNA levels of the neovascularization-related gene (vegfaa) and vascular endothelial growth factor receptor gene (VEGFR), neurodevelopment related genes (mbp and α1-tubulin), brain-derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF) were significantly downregulated; whereas apoptosis-related genes (caspase-3, caspase-7, caspase-9 and bax/bcl-2), and inflammatory factor genes (IL-1β, IL-6, IL-10, TNF-α and NF-κB) were remarkably upregulated in the model. These results suggest that the pathophysiology of Ponatinib-induced zebrafish ischemic stroke is similar to that of human ischemic stroke patients and this whole animal model could be used to study the complex cellular and molecular pathogenesis of ischemic stroke and to rapidly identify therapeutic agents.


Acetylsalicylic acid inhibits α,β-meATP-induced facilitation of neck muscle nociception in mice--implications for acute treatment of tension-type headache.

  • Dejan Ristic‎ et al.
  • European journal of pharmacology‎
  • 2011‎

Infusion of α,β-methylene ATP (α,β-meATP) into murine neck muscle facilitates brainstem nociception. This animal experimental model is suggested to be appropriate for investigating pathophysiological mechanisms in tension-type headache. It was hypothesized that d-lysine acetylsalicylic acid (ASA, aspirin®) reverses this α,β-meATP effect. Facilitation of neck muscle nociceptive processing was induced via bilateral infusion of α,β-meATP into semispinal neck muscles (100 nM, 20 μl each) in 42 anesthetized mice. Brainstem nociception was monitored by the jaw-opening reflex elicited via electrical tongue stimulation. The hypothesis was addressed by subsequent (15, 30, 60 mg/kg) and preceding (60 mg/kg) intraperitoneal ASA injection. Saline served as control to ASA solution. Subsequent ASA dose-dependently reversed α,β-meATP-induced reflex facilitation and was the most prominent with 60 mg/kg. Preceding 60 mg/kg ASA prevented reflex facilitation. Cyclooxygenases are involved in nociceptive transmission. Former experiments showed that unspecific inhibition of cyclooxygenases does not alter the α,β-meATP effect. This suggests a specific mode of action of ASA. The concept is accepted that neck muscle nociception is involved in the pathophysiology of tension-type headache. Thus, objective proof of ASA effects in this experimental model may emphasize its major role in pharmacological treatment of tension-type headache attacks.


Suppression of Wnt/beta-catenin signaling inhibits prostate cancer cell proliferation.

  • Wenyan Lu‎ et al.
  • European journal of pharmacology‎
  • 2009‎

Although mounting evidence has demonstrated an important role of Wnt/beta-catenin signaling in the development and progression of cancer, the therapeutic potential of small molecules that target this pathway for prostate cancer remains largely unknown. We reported herein that the highly invasive androgen-independent PC-3 and DU145 human prostate cancer cells exhibited higher levels of Wnt/beta-catenin signaling than the androgen-dependent LNCaP prostate cancer cells and non-cancerous PZ-HPV-7 and PWR-1E prostate cells, and that exogenous Wnt3A treatment exaggerated the difference of the Wnt/beta-catenin signaling levels among these prostate cells. Furthermore, we demonstrated that the non-steroidal anti-inflammatory drug, sulindac sulfide, the cyclooxygenase-2 (COX-2) selective inhibitor, celecoxib, and the nitric oxide-donating aspirin derivative, NO-ASA, blocked Wnt/beta-catenin signaling in PC-3 and DU145 cells. These effects occurred at concentrations comparable to those required to inhibit cell proliferation, indicating that the inhibitory effect of these drugs on prostate cancer cell proliferation may involve the suppression of Wnt/beta-catenin signaling. Finally, we showed that a novel small molecule inhibitor of Wnt/beta-catenin signaling, PKF118- 310, inhibited Wnt/beta-catenin signaling and proliferation in prostate cancer cells within the same concentration range. Together, these results suggest that small molecules that inhibit Wnt/beta-catenin signaling have therapeutic potential for the prevention or treatment of prostate cancer.


Activation of the Nrf2 response by oleanolic acid oxime morpholide (3-hydroxyiminoolean-12-en-28-oic acid morpholide) is associated with its ability to induce apoptosis and inhibit proliferation in HepG2 hepatoma cells.

  • Maria Narożna‎ et al.
  • European journal of pharmacology‎
  • 2020‎

Our previous study demonstrated that new oleanolic acid oxime (OAO) derivatives and their conjugates with aspirin (ASP) inhibit NF-κB activation. Evidence exists that the downregulation of NF-κB negatively interferes with the Nrf2 signaling pathway. This study aimed to evaluate the effect of these compounds on Nrf2 activation and its cellular consequences in human hepatoma HepG2 cells and immortalized normal hepatocytes THLE-2. The results showed the enhanced activation and expression of Nrf2 as a result of treatment with OAO derivatives themselves and to less extent by their ASP conjugates, mainly in HepG2 cells. The association between cytotoxicity evaluated in our previous study and Nrf2 activation was observed. In this regard, compounds (18) with morpholide substituent at the C-17 position of OAO molecule and (12) with methyl ester substituent at the same position of OAO molecule to the most extent activated Nrf2 and subsequently cell cycle arrest at G2/M, leading to increased apoptosis and the number of resting HepG2 cells. The derivative of OAO (18) substituted with ASP (19) also affected Nrf2 activation and expression, but this effect was less pronounced in comparison with non-conjugated OAO. However, conjugation enhanced Nrf2 activation in normal THLE-2 cells. These results confirmed our earlier suggestion that OAO derivatives conjugated with ASP have the potential for application in the liver cancer chemoprevention. OAO themselves, particularly OAO substituted with morpholide, may be considered therapeutic agents, which may support conventional treatment strategy. Further studies are required to confirm this suggestion.


AT-RvD1 modulates the activation of bronchial epithelial cells induced by lipopolysaccharide and Dermatophagoides pteronyssinus.

  • Jhony Robison de Oliveira‎ et al.
  • European journal of pharmacology‎
  • 2017‎

Bronchial epithelial cells are essential to airways homeostasis; however, they are also involved in exacerbation of airway inflammatory responses of patients with conditions such as asthma. Dermatophagoides pteronyssinus (Dp), the most important allergen, and lipopolysaccharide (LPS), both of which are present in house dust mites (HDM), can activate immune and structural cells (such as bronchial epithelial cells) and modulate the airway inflammation in asthma patients. Resolvin D1 (RvD1) and its epimer aspirin-triggered-resolvin D1 (AT-RvD1) are lipid mediators that are produced during the resolution of inflammation and demonstrate anti-inflammatory and pro-resolution effects in several experimental models including experimental models of allergic airway inflammation. Here, we evaluated the effects of AT-RvD1 (10-12-10-10 M) on human bronchial epithelial cells (BEAS-2B) stimulated with LPS (2μg/ml) or Dp (10μg/ml). After 24h, the C-C motif chemokine ligand 2 (CCL-2) production was increased in cells that had been stimulated with LPS and Dp compared to the control. However, AT-RvD1 (10-11 and 10-10 M) significantly reduced the concentration of CCL-2 in a manner that was dependent on the N-formyl peptide receptor 2 (FPR2/ALX) and nuclear factor kappa B (NF-κB) pathways in cells stimulated with LPS or Dp compared to controls. In addition, AT-RvD1 reduced the phosphorylation of signal transducer and activator of transcription (STAT)6 and STAT1 in cells stimulated with Dp and LPS, respectively. In conclusion, AT-RvD1 demonstrated significant anti-inflammatory effects in bronchial epithelial cells that were stimulated with LPS or Dp, which provides new perspectives for therapeutic strategies to control inflammatory airway diseases.


A salicylate-based small molecule HS-Cm exhibits immunomodulatory effects and inhibits dipeptidyl peptidase-IV activity in human T cells.

  • Jun-Ting Liou‎ et al.
  • European journal of pharmacology‎
  • 2014‎

Activated T cells are key players in chronic inflammatory diseases, including atherosclerosis. Salicylates, like aspirin, display not only anti-inflammatory, anti-thrombotic, anti-atherosclerotic activities, but also immunomodulatory effects in T cells at high dosages. Here, we aimed to identify potent immunomodulators for T cells through cell-based screening from a mini-library of 300 salicylate-based small molecules, and elucidate the mechanisms. Human peripheral blood T cells were isolated from buffy coat. Phorbol 12-myristate 13-acetate plus ionomycin (P/I) was used to stimulate T cells. Cytokine production was measured by enzyme-linked immunosorbent assays. T cell activation markers were determined by flow cytometry. The activation of transcription factors and kinases was analyzed by western blotting, electrophoretic mobility shift assay, or kinase assay. Through library screening, we identified a small molecule named HS-Cm [C13H9ClFNO2; N-(4-chloro-2-fluorophenyl)-2-hydroxybenzamide] that exhibited potent immunomodulatory effects on T cells with low cytotoxicity. In P/I-stimulated T cells, HS-Cm inhibited the production of interleukin-2, tumor necrosis factor-alpha, and interferon-gamma and suppressed the expression of surface activation markers CD25, CD69, and CD71, but not CD45RO. HS-Cm down-regulated DNA-binding activities of activator protein-1 and nuclear factor-kappa B, but not nuclear factor of activated T-cells, through inhibiting c-Jun N-terminal kinase/p38 and inhibitor of kappaB alpha (IκBα) kinase (IKK)/IκBα pathways, respectively. On the basis of structure-activity relationship, HS-Cm exerted considerable inhibition of dipeptidyl-peptidase IV/CD26 activity in T cells. Our results suggested that the small molecule HS-Cm exhibiting immunomodulatory effects on T cells may be useful for therapeutics in chronic inflammatory diseases, like atherosclerosis, diabetes and autoimmune arthritis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: