Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Aspirin induces IL-4 production: augmented IL-4 production in aspirin-exacerbated respiratory disease.

  • Su-Kang Kong‎ et al.
  • Experimental & molecular medicine‎
  • 2016‎

Aspirin hypersensitivity is a hallmark of aspirin-exacerbated respiratory disease (AERD), a clinical syndrome characterized by the severe inflammation of the respiratory tract after ingestion of cyclooxygenase-1 inhibitors. We investigated the capacity of aspirin to induce interleukin-4 (IL-4) production in inflammatory cells relevant to AERD pathogenesis and examined the associated biochemical and molecular pathways. We also compared IL-4 production in peripheral blood mononuclear cells (PBMCs) from patients with AERD vs aspirin-tolerant asthma (ATA) upon exposure to aspirin. Aspirin induced IL-4 expression and activated the IL-4 promoter in a report assay. The capacity of aspirin to induce IL-4 expression correlated with its activity to activate mitogen-activated protein kinases, to form DNA-protein complexes on P elements in the IL-4 promoter and to synthesize nuclear factor of activated T cells, critical transcription factors for IL-4 transcription. Of clinical importance, aspirin upregulated IL-4 production twice as much in PBMCs from patients with AERD compared with PBMCs from patients with ATA. Our results suggest that IL-4 is an inflammatory component mediating intolerance reactions to aspirin, and thus is crucial for AERD pathogenesis.


Leukotriene-related gene polymorphisms in patients with aspirin-intolerant urticaria and aspirin-intolerant asthma: differing contributions of ALOX5 polymorphism in Korean population.

  • Seung-Hyun Kim‎ et al.
  • Journal of Korean medical science‎
  • 2005‎

The pathogenesis of aspirin (acetylsalicylic acid, ASA)-intolerant urticaria (AIU) is still poorly understood but it has recently been suggested that it is associated with the overproduction of leukotriene (LT). This is supported by evidence that cyclooxygenase 2 inhibitor is given safely to patients with AIU. The present study was designed to investigate the role of genetic polymorphism of LT related genes in the pathogenesis of AIU via a case-control study. We screened single nucleotide polymorphisms (SNPs) in genes encoding enzymes involved in leukotriene synthesis in the Korean population with AIU (n = 101), ASA-intolerant asthma (AIA, n = 95) and normal healthy controls (n = 123). Genotype was determined by primer extension reactions using the SNapShot ddNTP primer extension kit. Among 8 SNPs of four LT related genes, the polymorphism of ALOX5 at positions of -1708 G > A showed significant difference in genotype frequency between AIU and AIA (p = 0.01). Furthermore, there were significant differences observed in the frequencies of two ALOX5 haplotypes between the AIU group and AIA group (p < 0.05). However, there were no differences in allele, genotype, or haplotype frequencies of ALOX5 between the AIU group and the normal control group. These results suggested that ALOX5 has a differing contribution in two major clinical pathogenesis related to ASA-sensitivity.


Exonic variants associated with development of aspirin exacerbated respiratory diseases.

  • Seung-Woo Shin‎ et al.
  • PloS one‎
  • 2014‎

Aspirin-exacerbated respiratory disease (AERD) is one phenotype of asthma, often occurring in the form of a severe and sudden attack. Due to the time-consuming nature and difficulty of oral aspirin challenge (OAC) for AERD diagnosis, non-invasive biomarkers have been sought. The aim of this study was to identify AERD-associated exonic SNPs and examine the diagnostic potential of a combination of these candidate SNPs to predict AERD. DNA from 165 AERD patients, 397 subjects with aspirin-tolerant asthma (ATA), and 398 normal controls were subjected to an Exome BeadChip assay containing 240K SNPs. 1,023 models (210-1) were generated from combinations of the top 10 SNPs, selected by the p-values in association with AERD. The area under the curve (AUC) of the receiver operating characteristic (ROC) curves was calculated for each model. SNP Function Portal and PolyPhen-2 were used to validate the functional significance of candidate SNPs. An exonic SNP, exm537513 in HLA-DPB1, showed the lowest p-value (p = 3.40×10-8) in its association with AERD risk. From the top 10 SNPs, a combination model of 7 SNPs (exm537513, exm83523, exm1884673, exm538564, exm2264237, exm396794, and exm791954) showed the best AUC of 0.75 (asymptotic p-value of 7.94×10-21), with 34% sensitivity and 93% specificity to discriminate AERD from ATA. Amino acid changes due to exm83523 in CHIA were predicted to be "probably damaging" to the structure and function of the protein, with a high score of '1'. A combination model of seven SNPs may provide a useful, non-invasive genetic marker combination for predicting AERD.


Association Analysis Between FILIP1 Polymorphisms and Aspirin Hypersensitivity in Korean Asthmatics.

  • Jason Yongha Kim‎ et al.
  • Allergy, asthma & immunology research‎
  • 2013‎

Aspirin exacerbated respiratory disease (AERD) results in a severe asthma attack after aspirin ingestion in asthmatics. The filamin A interacting protein 1 (FILIP1) may play a crucial role in AERD pathogenesis by mediating T cell activation and membrane rearrangement. We investigated the association of FILIP1 variations with AERD and the fall rate of forced expiratory volume in one second (FEV1).


Association of CACNG6 polymorphisms with aspirin-intolerance asthmatics in a Korean population.

  • Jin Sol Lee‎ et al.
  • BMC medical genetics‎
  • 2010‎

Aspirin-intolerant asthma (AIA) occurs in the lower and upper airways through excessive production of leukotrienes upon administration of non-steroidal anti-inflammatory drugs (NSAIDs). One of the three symptoms of AIA is nasal polyposis, a chronic inflammatory disease that is related to the function of calcium ion in recruitment of immune cells during airway inflammation. It has been implicated that bronchodilation in the airway is related to Ca(2+) regulation. The calcium channel, voltage-dependent, gamma subunit 6 (CACNG6) gene encodes a protein that stabilizes the calcium channel.


Association analysis of ILVBL gene polymorphisms with aspirin-exacerbated respiratory disease in asthma.

  • Hun Soo Chang‎ et al.
  • BMC pulmonary medicine‎
  • 2017‎

We previously reported that the ILVBL gene on chromosome 19p13.1 was associated with the risk for aspirin-exacerbated respiratory disease (AERD) and the percent decline of forced expired volume in one second (FEV1) after an oral aspirin challenge test. In this study, we confirmed the association between polymorphisms and haplotypes of the ILVBL gene and the risk for AERD and its phenotype.


Polymorphisms of ATF6B Are Potentially Associated With FEV1 Decline by Aspirin Provocation in Asthmatics.

  • Tae-Joon Park‎ et al.
  • Allergy, asthma & immunology research‎
  • 2014‎

Endoplasmic reticulum (ER) stress has recently been observed to activate NF-kappaB and induce inflammatory responses such as asthma. Activating transcription factor 6β (ATF6B) is known to regulate ATFα-mediated ER stress response. The aim of this study is to investigate the associations of ATF6B genetic variants with aspirin-exacerbated respiratory disease (AERD) and its major phenotype, % decline of FEV1 by aspirin provocation.


Association Analysis of TEC Polymorphisms with Aspirin-Exacerbated Respiratory Disease in a Korean Population.

  • Jin Sol Lee‎ et al.
  • Genomics & informatics‎
  • 2014‎

The tyrosine-protein kinase Tec (TEC) is a member of non-receptor tyrosine kinases and has critical roles in cell signaling transmission, calcium mobilization, gene expression, and transformation. TEC is also involved in various immune responses, such as mast cell activation. Therefore, we hypothesized that TEC polymorphisms might be involved in aspirin-exacerbated respiratory disease (AERD) pathogenesis. We genotyped 38 TEC single nucleotide polymorphisms in a total of 592 subjects, which comprised 163 AERD cases and 429 aspirin-tolerant asthma controls. Logistic regression analysis was performed to examine the associations between TEC polymorphisms and the risk of AERD in a Korean population. The results revealed that TEC polymorphisms and major haplotypes were not associated with the risk of AERD. In another regression analysis for the fall rate of forced expiratory volume in 1 second (FEV1) by aspirin provocation, two variations (rs7664091 and rs12500534) and one haplotype (TEC_BL2_ht4) showed nominal associations with FEV1 decline (p = 0.03-0.04). However, the association signals were not retained after performing corrections for multiple testing. Despite TEC playing an important role in immune responses, the results from the present study suggest that TEC polymorphisms do not affect AERD susceptibility. Findings from the present study might contribute to the genetic etiology of AERD pathogenesis.


Positive association between aspirin-intolerant asthma and genetic polymorphisms of FSIP1: a case-case study.

  • Jason Yongha Kim‎ et al.
  • BMC pulmonary medicine‎
  • 2010‎

Aspirin-intolerant asthma (AIA), which is caused by non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, causes lung inflammation and reversal bronchi reduction, leading to difficulty in breathing. Aspirin is known to affect various parts inside human body, ranging from lung to spermatogenesis. FSIP1, also known as HDS10, is a recently discovered gene that encodes fibrous sheath interacting protein 1, and is regulated by amyloid beta precursor protein (APP). Recently, it has been reported that a peptide derived from APP is cleaved by alpha disintegrin and metalloproteinase 33 (ADAM33), which is an asthma susceptibility gene. It has also been known that the FSIP1 gene is expressed in airway epithelium.


WDR46 is a Genetic Risk Factor for Aspirin-Exacerbated Respiratory Disease in a Korean Population.

  • Charisse Flerida A Pasaje‎ et al.
  • Allergy, asthma & immunology research‎
  • 2012‎

The human WD repeat-containing protein 46 (WDR46; also known as C6orf11), located at the disease-relevant centromere side of the class II major histocompatibility complex region, is hypothesized to be associated with risk of aspirin-exacerbated respiratory disease (AERD) as well as a decline in forced expiratory volume in the first second (FEV1), an important diagnostic marker of asthma.


Genome-wide and follow-up studies identify CEP68 gene variants associated with risk of aspirin-intolerant asthma.

  • Jeong-Hyun Kim‎ et al.
  • PloS one‎
  • 2010‎

Aspirin-intolerant asthma (AIA) is a rare condition that is characterized by the development of bronchoconstriction in asthmatic patients after ingestion of non-steroidal anti-inflammatory drugs including aspirin. However, the underlying mechanisms of AIA occurrence are still not fully understood. To identify the genetic variations associated with aspirin intolerance in asthmatics, the first stage of genome-wide association study with 109,365 single nucleotide polymorphisms (SNPs) was undertaken in a Korean AIA (n = 80) cohort and aspirin-tolerant asthma (ATA, n = 100) subjects as controls. For the second stage of follow-up study, 150 common SNPs from 11 candidate genes were genotyped in 163 AIA patients including intermediate AIA (AIA-I) subjects and 429 ATA controls. Among 11 candidate genes, multivariate logistic analyses showed that SNPs of CEP68 gene showed the most significant association with aspirin intolerance (P values of co-dominant for CEP68, 6.0×10(-5) to 4.0×10(-5)). All seven SNPs of the CEP68 gene showed linkage disequilibrium (LD), and the haplotype of CEP68_ht4 (T-G-A-A-A-C-G) showed a highly significant association with aspirin intolerance (OR= 2.63; 95% CI= 1.64-4.21; P = 6.0×10(-5)). Moreover, the nonsynonymous CEP68 rs7572857G>A variant that replaces glycine with serine showed a higher decline of forced expiratory volume in 1s (FEV(1)) by aspirin provocation than other variants (P = 3.0×10(-5)). Our findings imply that CEP68 could be a susceptible gene for aspirin intolerance in asthmatics, suggesting that the nonsynonymous Gly74Ser could affect the polarity of the protein structure.


Potential association of DCBLD2 polymorphisms with fall rates of FEV(1) by aspirin provocation in Korean asthmatics.

  • Tae-Joon Park‎ et al.
  • Journal of Korean medical science‎
  • 2012‎

Aspirin exacerbated respiratory disease (AERD) is a clinical syndrome characterized by chronic rhinosinusitis with nasal polyposis and aspirin hypersensitivity. The aspirin-induced bronchospasm is mediated by mast cell and eosinophilic inflammation. Recently, it has been reported that the expression of discoidin, CUB and LCCL domain-containing protein 2 (DCBLD2) is up-regulated in lung cancers and is regulated by transcription factor AP-2 alpha (TFAP2A), a component of activator protein-2 (AP-2) that is known to regulate IL-8 production in human lung fibroblasts and epithelial cells. To investigate the associations between AERD and DCBLD2 polymorphisms, 12 common variants were genotyped in 163 AERD subjects and 429 aspirin tolerant asthma (ATA) controls. Among these variants, seven SNPs (rs1371687, rs7615856, rs828621, rs828618, rs828616, rs1062196, and rs8833) and one haplotype (DCBLD2-ht1) show associations with susceptibility to AERD. In further analysis, this study reveals significant associations between the SNPs or haplotypes and the percentage of forced expiratory volume in one second (FEV(1)) decline following aspirin challenge using multiple linear regression analysis. Furthermore, a non-synonymous SNP rs16840208 (Asp723Asn) shows a strong association with FEV(1) decline in AERD patients. Although further studies for the non-synonymous Asp723Asn variation are needed, our findings suggest that DCBLD2 could be related to FEV(1)-related phenotypes in asthmatics.


Elevation of Eosinophil-Derived Neurotoxin in Plasma of the Subjects with Aspirin-Exacerbated Respiratory Disease: A Possible Peripheral Blood Protein Biomarker.

  • Seung-Woo Shin‎ et al.
  • PloS one‎
  • 2013‎

Aspirin-exacerbated respiratory disease (AERD) remains widely underdiagnosed in asthmatics, primarily due to insufficient awareness of the relationship between aspirin ingestion and asthma exacerbation. The identification of aspirin hypersensitivity is therefore essential to avoid serious aspirin complications. The goal of the study was to develop plasma biomarkers to predict AERD. We identified differentially expressed genes in peripheral blood mononuclear cells (PBMC) between subjects with AERD and those with aspirin-tolerant asthma (ATA). The genes were matched with the secreted protein database (http://spd.cbi.pku.edu.cn/) to select candidate proteins in the plasma. Plasma levels of the candidate proteins were then measured in AERD (n = 40) and ATA (n = 40) subjects using an enzyme-linked immunosorbent assay (ELISA). Target genes were validated as AERD biomarkers using an ROC curve analysis. From 175 differentially expressed genes (p-value <0.0001) that were queried to the secreted protein database, 11 secreted proteins were retrieved. The gene expression patterns were predicted as elevated for 7 genes and decreased for 4 genes in AERD as compared with ATA subjects. Among these genes, significantly higher levels of plasma eosinophil-derived neurotoxin (RNASE2) were observed in AERD as compared with ATA subjects (70(14.62∼311.92) µg/ml vs. 12(2.55∼272.84) µg/ml, p-value <0.0003). Based on the ROC curve analysis, the AUC was 0.74 (p-value = 0.0001, asymptotic 95% confidence interval [lower bound: 0.62, upper bound: 0.83]) with 95% sensitivity, 60% specificity, and a cut-off value of 27.15 µg/ml. Eosinophil-derived neurotoxin represents a novel biomarker to distinguish AERD from ATA.


Possible role of EMID2 on nasal polyps pathogenesis in Korean asthma patients.

  • Charisse Flerida Arnejo Pasaje‎ et al.
  • BMC medical genetics‎
  • 2012‎

Since subepithelial fibrosis and protruded extracellular matrix are among the histological characteristics of polyps, the emilin/multimerin domain-containing protein 2 (EMID2) gene is speculated to be involved in the presence of nasal polyps in asthma and aspirin-hypersensitive patients.


Gene-Environment Interactions in Asthma: Genetic and Epigenetic Effects.

  • Jong-Uk Lee‎ et al.
  • Yonsei medical journal‎
  • 2015‎

Over the past three decades, a large number of genetic studies have been aimed at finding genetic variants associated with the risk of asthma, applying various genetic and genomic approaches including linkage analysis, candidate gene polymorphism studies, and genome-wide association studies (GWAS). However, contrary to general expectation, even single nucleotide polymorphisms (SNPs) discovered by GWAS failed to fully explain the heritability of asthma. Thus, application of rare allele polymorphisms in well defined phenotypes and clarification of environmental factors have been suggested to overcome the problem of 'missing' heritability. Such factors include allergens, cigarette smoke, air pollutants, and infectious agents during pre- and post-natal periods. The first and simplest interaction between a gene and the environment is a candidate interaction of both a well known gene and environmental factor in a direct physical or chemical interaction such as between CD14 and endotoxin or between HLA and allergens. Several GWAS have found environmental interactions with occupational asthma, aspirin exacerbated respiratory disease, tobacco smoke-related airway dysfunction, and farm-related atopic diseases. As one of the mechanisms behind gene-environment interaction is epigenetics, a few studies on DNA CpG methylation have been reported on subphenotypes of asthma, pitching the exciting idea that it may be possible to intervene at the junction between the genome and the environment. Epigenetic studies are starting to include data from clinical samples, which will make them another powerful tool for re-search on gene-environment interactions in asthma.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: