Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Can Machine Learning Models Predict Asparaginase-associated Pancreatitis in Childhood Acute Lymphoblastic Leukemia.

  • Rikke L Nielsen‎ et al.
  • Journal of pediatric hematology/oncology‎
  • 2022‎

Asparaginase-associated pancreatitis (AAP) frequently affects children treated for acute lymphoblastic leukemia (ALL) causing severe acute and persisting complications. Known risk factors such as asparaginase dosing, older age and single nucleotide polymorphisms (SNPs) have insufficient odds ratios to allow personalized asparaginase therapy. In this study, we explored machine learning strategies for prediction of individual AAP risk. We integrated information on age, sex, and SNPs based on Illumina Omni2.5exome-8 arrays of patients with childhood ALL (N=1564, 244 with AAP 1.0 to 17.9 yo) from 10 international ALL consortia into machine learning models including regression, random forest, AdaBoost and artificial neural networks. A model with only age and sex had area under the receiver operating characteristic curve (ROC-AUC) of 0.62. Inclusion of 6 pancreatitis candidate gene SNPs or 4 validated pancreatitis SNPs boosted ROC-AUC somewhat (0.67) while 30 SNPs, identified through our AAP genome-wide association study cohort, boosted performance (0.80). Most predictive features included rs10273639 (PRSS1-PRSS2), rs10436957 (CTRC), rs13228878 (PRSS1/PRSS2), rs1505495 (GALNTL6), rs4655107 (EPHB2) and age (1 to 7 y). Second AAP following asparaginase re-exposure was predicted with ROC-AUC: 0.65. The machine learning models assist individual-level risk assessment of AAP for future prevention trials, and may legitimize asparaginase re-exposure when AAP risk is predicted to be low.


Synthetic Lethality of Wnt Pathway Activation and Asparaginase in Drug-Resistant Acute Leukemias.

  • Laura Hinze‎ et al.
  • Cancer cell‎
  • 2019‎

Resistance to asparaginase, an antileukemic enzyme that depletes asparagine, is a common clinical problem. Using a genome-wide CRISPR/Cas9 screen, we found a synthetic lethal interaction between Wnt pathway activation and asparaginase in acute leukemias resistant to this enzyme. Wnt pathway activation induced asparaginase sensitivity in distinct treatment-resistant subtypes of acute leukemia, but not in normal hematopoietic progenitors. Sensitization to asparaginase was mediated by Wnt-dependent stabilization of proteins (Wnt/STOP), which inhibits glycogen synthase kinase 3 (GSK3)-dependent protein ubiquitination and proteasomal degradation, a catabolic source of asparagine. Inhibiting the alpha isoform of GSK3 phenocopied this effect, and pharmacologic GSK3α inhibition profoundly sensitized drug-resistant leukemias to asparaginase. Our findings provide a molecular rationale for activation of Wnt/STOP signaling to improve the therapeutic index of asparaginase.


Trypsin-encoding PRSS1-PRSS2 variations influence the risk of asparaginase-associated pancreatitis in children with acute lymphoblastic leukemia: a Ponte di Legno toxicity working group report.

  • Benjamin O Wolthers‎ et al.
  • Haematologica‎
  • 2019‎

Asparaginase-associated pancreatitis is a life-threatening toxicity to childhood acute lymphoblastic leukemia treatment. To elucidate genetic predisposition and asparaginase-associated pancreatitis pathogenesis, ten trial groups contributed remission samples from patients aged 1.0-17.9 years treated for acute lymphoblastic leukemia between 2000 and 2016. Cases (n=244) were defined by the presence of at least two of the following criteria: (i) abdominal pain; (ii) levels of pancreatic enzymes ≥3 × upper normal limit; and (iii) imaging compatible with pancreatitis. Controls (n=1320) completed intended asparaginase therapy, with 78% receiving ≥8 injections of pegylated-asparaginase, without developing asparaginase-associated pancreatitis. rs62228256 on 20q13.2 showed the strongest association with the development of asparaginase-associated pancreatitis (odds ratio=3.75; P=5.2×10-8). Moreover, rs13228878 (OR=0.61; P=7.1×10-6) and rs10273639 (OR=0.62; P=1.1×10-5) on 7q34 showed significant association with the risk of asparaginase-associated pancreatitis. A Dana Farber Cancer Institute ALL Consortium cohort consisting of patients treated on protocols between 1987 and 2004 (controls=285, cases=33), and the Children's Oncology Group AALL0232 cohort (controls=2653, cases=76) were available as replication cohorts for the 20q13.2 and 7q34 variants, respectively. While rs62228256 was not validated as a risk factor (P=0.77), both rs13228878 (P=0.03) and rs10273639 (P=0.04) were. rs13228878 and rs10273639 are in high linkage disequilibrium (r2=0.94) and associated with elevated expression of the PRSS1 gene, which encodes for trypsinogen, and are known risk variants for alcohol-associated and sporadic pancreatitis in adults. Intra-pancreatic trypsinogen cleavage to proteolytic trypsin induces autodigestion and pancreatitis. In conclusion, this study finds a shared genetic predisposition between asparaginase-associated pancreatitis and non-asparaginase-associated pancreatitis, and targeting the trypsinogen activation pathway may enable identification of effective interventions for asparaginase-associated pancreatitis.


Supramolecular assembly of GSK3α as a cellular response to amino acid starvation.

  • Laura Hinze‎ et al.
  • Molecular cell‎
  • 2022‎

The tolerance of amino acid starvation is fundamental to robust cellular fitness. Asparagine depletion is lethal to some cancer cells, a vulnerability that can be exploited clinically. We report that resistance to asparagine starvation is uniquely dependent on an N-terminal low-complexity domain of GSK3α, which its paralog GSK3β lacks. In response to depletion of specific amino acids, including asparagine, leucine, and valine, this domain mediates supramolecular assembly of GSK3α with ubiquitin-proteasome system components in spatially sequestered cytoplasmic bodies. This effect is independent of mTORC1 or GCN2. In normal cells, GSK3α promotes survival during essential amino acid starvation. In human leukemia, GSK3α body formation predicts asparaginase resistance, and sensitivity to asparaginase combined with a GSK3α inhibitor. We propose that GSK3α body formation provides a cellular mechanism to maximize the catalytic efficiency of proteasomal protein degradation in response to amino acid starvation, an adaptive response co-opted by cancer cells for asparaginase resistance.


Genetic Variation in ABCC4 and CFTR and Acute Pancreatitis during Treatment of Pediatric Acute Lymphoblastic Leukemia.

  • Thies Bartram‎ et al.
  • Journal of clinical medicine‎
  • 2021‎

Acute pancreatitis (AP) is a serious, mechanistically not entirely resolved side effect of L-asparaginase-containing treatment for acute lymphoblastic leukemia (ALL). To find new candidate variations for AP, we conducted a genome-wide association study (GWAS).


GSK3α Regulates Temporally Dynamic Changes in Ribosomal Proteins upon Amino Acid Starvation in Cancer Cells.

  • Lorent Loxha‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Amino acid availability is crucial for cancer cells' survivability. Leukemia and colorectal cancer cells have been shown to resist asparagine depletion by utilizing GSK3-dependent proteasomal degradation, termed the Wnt-dependent stabilization of proteins (Wnt/STOP), to replenish their amino acid pool. The inhibition of GSK3α halts the sourcing of amino acids, which subsequently leads to cancer cell vulnerability toward asparaginase therapy. However, resistance toward GSK3α-mediated protein breakdown can occur, whose underlying mechanism is poorly understood. Here, we set out to define the mechanisms driving dependence toward this degradation machinery upon asparagine starvation in cancer cells. We show the independence of known stress response pathways including the integrated stress response mediated with GCN2. Additionally, we demonstrate the independence of changes in cell cycle progression and expression levels of the asparagine-synthesizing enzyme ASNS. Instead, RNA sequencing revealed that GSK3α inhibition and asparagine starvation leads to the temporally dynamic downregulation of distinct ribosomal proteins, which have been shown to display anti-proliferative functions. Using a CRISPR/Cas9 viability screen, we demonstrate that the downregulation of these specific ribosomal proteins can rescue cell death upon GSK3α inhibition and asparagine starvation. Thus, our findings suggest the vital role of the previously unrecognized regulation of ribosomal proteins in bridging GSK3α activity and tolerance of asparagine starvation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: