Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Arthropod-Borne Viruses in Mauritania: A Literature Review.

  • Abdallahi El Ghassem‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

During the past four decades, recurrent outbreaks of various arthropod-borne viruses have been reported in Mauritania. This review aims to consolidate the current knowledge on the epidemiology of the major arboviruses circulating in Mauritania. Online databases including PubMed and Web of Science were used to retrieve relevant published studies. The results showed that numerous arboviral outbreaks of variable magnitude occurred in almost all 13 regions of Mauritania, with Rift Valley fever (RVF), Crimean-Congo hemorrhagic fever (CCHF), and dengue (DEN) being the most common infections. Other arboviruses causing yellow fever (YF), chikungunya (CHIK), o'nyong-nyong (ONN), Semliki Forest (SF), West Nile fever (WNF), Bagaza (BAG), Wesselsbron (WSL), and Ngari (NRI) diseases have also been found circulating in humans and/or livestock in Mauritania. The average case fatality rates of CCHF and RVF were 28.7% and 21.1%, respectively. RVF outbreaks have often occurred after unusually heavy rainfalls, while CCHF epidemics have mostly been reported during the dry season. The central and southeastern regions of the country have carried the highest burden of RVF and CCHF. Sheep, cattle, and camels are the main animal reservoirs for the RVF and CCHF viruses. Culex antennatus and Cx. poicilipes mosquitoes and Hyalomma dromedarii, H. rufipes, and Rhipicephalus everesti ticks are the main vectors of these viruses. DEN outbreaks occurred mainly in the urban settings, including in Nouakchott, the capital city, and Aedes aegypti is likely the main mosquito vector. Therefore, there is a need to implement an integrated management strategy for the prevention and control of arboviral diseases based on sensitizing the high-risk occupational groups, such as slaughterhouse workers, shepherds, and butchers for zoonotic diseases, reinforcing vector surveillance and control, introducing rapid point-of-care diagnosis of arboviruses in high-risk areas, and improving the capacities to respond rapidly when the first signs of disease outbreak are identified.


Current Arboviral Threats and Their Potential Vectors in Thailand.

  • Chadchalerm Raksakoon‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Arthropod-borne viral diseases (arboviruses) are a public-health concern in many regions of the world, including Thailand. This review describes the potential vectors and important human and/or veterinary arboviruses in Thailand. The medically important arboviruses affect humans, while veterinary arboviruses affect livestock and the economy. The main vectors described are mosquitoes, but other arthropods have been reported. Important mosquito-borne arboviruses are transmitted mainly by members of the genus Aedes (e.g., dengue, chikungunya, and Zika virus) and Culex (e.g., Japanese encephalitis, Tembusu and West Nile virus). While mosquitoes are important vectors, arboviruses are transmitted via other vectors, such as sand flies, ticks, cimicids (Family Cimicidae) and Culicoides. Veterinary arboviruses are reported in this review, e.g., duck Tembusu virus (DTMUV), Kaeng Khoi virus (KKV), and African horse sickness virus (AHSV). During arbovirus outbreaks, to target control interventions appropriately, it is critical to identify the vector(s) involved and their ecology. Knowledge of the prevalence of these viruses, and the potential for viral infections to co-circulate in mosquitoes, is also important for outbreak prediction.


Atelerix algirus, the North African Hedgehog: Suitable Wild Host for Infected Ticks and Fleas and Reservoir of Vector-Borne Pathogens in Tunisia.

  • Ghofrane Balti‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Small wild mammals are an important element in the emergence and transmission of vector-borne pathogens (VBPs). Among these species, hedgehogs have been found to be a reservoir of VBPs and host of arthropod vectors. Surveillance of VBPs in wildlife and their arthropods are crucial in a one health context. We conducted an exploratory study to screen Atelerix algirus hedgehogs and their infesting ticks and fleas for VBPs using a high throughput microfluidic real-time PCR system. Tested biopsies from hedgehogs were found to be naturally infected by Theileria youngi, Hepatozoon sp., Ehrlichia ewingii, Coxiella burnetii, and Candidatus Ehrlichia shimanensis. Similarly, Haemaphysalis erinacei and Rhipicephalus sanguineus tick species were infected by Ehrlichia ewingii, Rickettsia spp., Rickettsia massiliae, Borrelia sp., Coxiella burnetii, Rickettsia lusitaniae and Anaplasma sp. Archaeopsylla erinacei fleas were infected by Rickettsia asembonensis, Coxiella burnetii, and Rickettsia massiliae. Co-infections by two and three pathogens were detected in hedgehogs and infesting ticks and fleas. The microfluidic real-time PCR system enabled us not only to detect new and unexpected pathogens, but also to identify co-infections in hedgehogs, ticks, and fleas. We suggest that hedgehogs may play a reservoir role for VBPs in Tunisia and contribute to maintaining enzootic pathogen cycles via arthropod vectors.


Detection of Vesicular Stomatitis Virus Indiana from Insects Collected during the 2020 Outbreak in Kansas, USA.

  • Bethany L McGregor‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Vesicular stomatitis (VS) is a reportable viral disease which affects horses, cattle, and pigs in the Americas. Outbreaks of vesicular stomatitis virus New Jersey serotype (VSV-NJ) in the United States typically occur on a 5-10-year cycle, usually affecting western and southwestern states. In 2019-2020, an outbreak of VSV Indiana serotype (VSV-IN) extended eastward into the states of Kansas and Missouri for the first time in several decades, leading to 101 confirmed premises in Kansas and 37 confirmed premises in Missouri. In order to investigate which vector species contributed to the outbreak in Kansas, we conducted insect surveillance at two farms that experienced confirmed VSV-positive cases, one each in Riley County and Franklin County. Centers for Disease Control and Prevention miniature light traps were used to collect biting flies on the premises. Two genera of known VSV vectors, Culicoides biting midges and Simulium black flies, were identified to species, pooled by species, sex, reproductive status, and collection site, and tested for the presence of VSV-IN RNA by RT-qPCR. In total, eight positive pools were detected from Culicoides sonorensis (1), Culicoides stellifer (3), Culicoides variipennis (1), and Simulium meridionale (3). The C. sonorensis- and C. variipennis-positive pools were from nulliparous individuals, possibly indicating transovarial or venereal transmission as the source of virus. This is the first report of VSV-IN in field caught C. stellifer and the first report of either serotype in S. meridionale near outbreak premises. These results improve our understanding of the role midges and black flies play in VSV epidemiology in the United States and broadens the scope of vector species for targeted surveillance and control.


Impacts of Infectious Dose, Feeding Behavior, and Age of Culicoides sonorensis Biting Midges on Infection Dynamics of Vesicular Stomatitis Virus.

  • Paula Rozo-Lopez‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Culicoides sonorensis biting midges are biological vectors of vesicular stomatitis virus (VSV) in the U.S. Yet, little is known regarding the amount of ingested virus required to infect midges, nor how their feeding behavior or age affects viral replication and vector competence. We determined the minimum infectious dose of VSV-New Jersey for C. sonorensis midges and examined the effects of multiple blood-feeding cycles and age at the time of virus acquisition on infection dynamics. A minimum dose of 3.2 logs of virus/mL of blood resulted in midgut infections, and 5.2 logs/mL resulted in a disseminated infection to salivary glands. For blood-feeding behavior studies, ingestion of one or two non-infectious blood meals (BM) after a VSV infectious blood meal (VSV-BM) resulted in higher whole-body virus titers than midges receiving only the single infectious VSV-BM. Interestingly, this infection enhancement was not seen when a non-infectious BM preceded the infectious VSV-BM. Lastly, increased midge age at the time of infection correlated to increased whole-body virus titers. This research highlights the epidemiological implications of infectious doses, vector feeding behaviors, and vector age on VSV infection dynamics to estimate the risk of transmission by Culicoides midges more precisely.


Venereal Transmission of Vesicular Stomatitis Virus by Culicoides sonorensis Midges.

  • Paula Rozo-Lopez‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2020‎

Culicoides sonorensis biting midges are well-known agricultural pests and transmission vectors of arboviruses such as vesicular stomatitis virus (VSV). The epidemiology of VSV is complex and encompasses a broad range of vertebrate hosts, multiple routes of transmission, and diverse vector species. In temperate regions, viruses can overwinter in the absence of infected animals through unknown mechanisms, to reoccur the next year. Non-conventional routes for VSV vector transmission may help explain viral maintenance in midge populations during inter-epidemic periods and times of adverse conditions for bite transmission. In this study, we examined whether VSV could be transmitted venereally between male and female midges. Our results showed that VSV-infected females could venereally transmit virus to uninfected naïve males at a rate as high as 76.3% (RT-qPCR), 31.6% (virus isolation) during the third gonotrophic cycle. Additionally, VSV-infected males could venereally transmit virus to uninfected naïve females at a rate as high as 76.6% (RT-qPCR), 49.2% (virus isolation). Immunofluorescent staining of micro-dissected reproductive organs, immunochemical staining of midge histological sections, examination of internal reproductive organ morphology, and observations of mating behaviors were used to determine relevant anatomical sites for virus location and to hypothesize the potential mechanism for VSV transmission in C. sonorensis midges through copulation.


Surveillance along the Rio Grande during the 2020 Vesicular Stomatitis Outbreak Reveals Spatio-Temporal Dynamics of and Viral RNA Detection in Black Flies.

  • Katherine I Young‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Vesicular stomatitis virus (VSV) emerges periodically from its focus of endemic transmission in southern Mexico to cause epizootics in livestock in the US. The ecology of VSV involves a diverse, but largely undefined, repertoire of potential reservoir hosts and invertebrate vectors. As part of a larger program to decipher VSV transmission, we conducted a study of the spatiotemporal dynamics of Simulium black flies, a known vector of VSV, along the Rio Grande in southern New Mexico, USA from March to December 2020. Serendipitously, the index case of VSV-Indiana (VSIV) in the USA in 2020 occurred at a central point of our study. Black flies appeared soon after the release of the Rio Grande's water from an upstream dam in March 2020. Two-month and one-year lagged precipitation, maximum temperature, and vegetation greenness, measured as Normalized Difference Vegetation Index (NDVI), were associated with increased black fly abundance. We detected VSIV RNA in 11 pools comprising five black fly species using rRT-PCR; five pools yielded a VSIV sequence. To our knowledge, this is the first detection of VSV in the western US from vectors that were not collected on premises with infected domestic animals.


Highly Sensitive Virome Characterization of Aedes aegypti and Culex pipiens Complex from Central Europe and the Caribbean Reveals Potential for Interspecies Viral Transmission.

  • Jakob Thannesberger‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2020‎

Mosquitoes are the most important vectors for arthropod-borne viral diseases. Mixed viral infections of mosquitoes allow genetic recombination or reassortment of diverse viruses, turning mosquitoes into potential virologic mixing bowls. In this study, we field-collected mosquitoes of different species (Aedes aegypti and Culex pipiens complex), from different geographic locations and environments (central Europe and the Caribbean) for highly sensitive next-generation sequencing-based virome characterization. We found a rich virus community associated with a great diversity of host species. Among those, we detected a large diversity of novel virus sequences that we could predominately assign to circular Rep-encoding single-stranded (CRESS) DNA viruses, including the full-length genome of a yet undescribed Gemykrogvirus species. Moreover, we report for the first time the detection of a potentially zoonotic CRESS-DNA virus (Cyclovirus VN) in mosquito vectors. This study expands the knowledge on virus diversity in medically important mosquito vectors, especially for CRESS-DNA viruses that have previously been shown to easily recombine and jump the species barrier.


Mosquito Salivary Antigens and Their Relationship to Dengue and P. vivax Malaria.

  • McKenna M Howell‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2024‎

In tropical areas, the simultaneous transmission of multiple vector-borne diseases is common due to ecological factors shared by arthropod vectors. Malaria and dengue virus, transmitted by Anopheles and Aedes mosquitoes, respectively, are among the top vector-borne diseases that cause significant morbidity and mortality in endemic areas. Notably, tropical areas often have suitable conditions for the co-existence of these mosquito species, highlighting the importance of identifying markers that accurately indicate the risk of acquiring each specific disease entity. Aedes are daytime-biting mosquitoes, while Anopheles preferentially bite during the night. These biting patterns raise the possibility of concurrent exposure to bites from both species. This is important because mosquito saliva, deposited in the skin during blood feeding, induces immune responses that modulate pathogen establishment and infection. Previous studies have focused on characterizing such effects on the vector-pathogen interface for an individual pathogen and its mosquito vector. In this study, we evaluated associations between immune responses to salivary proteins from non-dengue and non-malaria vector mosquito species with clinical characteristics of malaria and dengue, respectively. Surprisingly, antibody responses against Anopheles antigens in dengue patients correlated with red blood cell count and hematocrit, while antibody responses against Aedes proteins were associated with platelet count in malaria patients. Our data indicate that concurrent exposure to multiple disease-carrying mosquito vectors and their salivary proteins with differing immunomodulatory properties could influence the transmission, pathogenesis, and clinical presentation of malaria, dengue fever, and other vector-borne illnesses.


Rift Valley Fever Virus Primes Immune Responses in Aedes aegypti Cells.

  • Mathilde Laureti‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

The ongoing global emergence of arthropod-borne (arbo) viruses has accelerated research into the interactions of these viruses with the immune systems of their vectors. Only limited information exists on how bunyaviruses, such as Rift Valley fever virus (RVFV), are sensed by mosquito immunity or escape detection. RVFV is a zoonotic phlebovirus (Bunyavirales; Phenuiviridae) of veterinary and human public health and economic importance. We have shown that the infection of mosquitoes with RVFV triggers the activation of RNA interference pathways, which moderately restrict viral replication. Here, we aimed to better understand the interactions between RVFV and other vector immune signaling pathways that might influence RVFV replication and transmission. For this, we used the immunocompetent Aedes aegypti Aag2 cell line as a model. We found that bacteria-induced immune responses restricted RVFV replication. However, virus infection alone did not alter the gene expression levels of immune effectors. Instead, it resulted in the marked enhancement of immune responses to subsequent bacterial stimulation. The gene expression levels of several mosquito immune pattern recognition receptors were altered by RVFV infection, which may contribute to this immune priming. Our findings imply that there is a complex interplay between RVFV and mosquito immunity that could be targeted in disease prevention strategies.


First Report of Swinepox in a Wild Boar in Italy: Pathologic and Molecular Findings.

  • Lisa Guardone‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

Swinepox virus (SWPV) is responsible for sporadic acute poxvirus infections in swine worldwide, causing a pathognomonic eruptive proliferative dermatitis. Beside direct and congenital transmission, the pig louse Haematopinus suis acts as a mechanical vector and favors virus infection through skin lesions. Infections are generally described in domestic pigs, while only a few cases have been reported in wild boars, in Austria and Germany. In September 2022, SWPV infection was suspected at post-mortem examination of a wild boar piglet with characteristic lesions in Liguria, Northwest Italy. The piglet was heavily parasitized by swine lice (H. suis). SWPV was then confirmed by histological and molecular analyses. Possible viral co-infections were also investigated (African swine fever virus, classical swine fever virus, parvovirus, circovirus, Aujeszky's disease virus and hepatitis E virus). This article describes gross and histopathologic features of SWPV infection, differential diagnosis, and potential vector-borne transmission to domestic pigs, presenting a brief review of the literature on the topic. SWPV infection is reported in wild boars in Italy for the first time. The finding of SWPV in a wild boar in an area with a very limited pig population may suggest the existence of a "wildlife cycle" in the area. Further investigations are needed to understand the real risk of transmission of SWPV to domestic pigs as well as the role of other arthropod vectors.


Molecular Detection and Phylogenetic Analyses of Diverse Bartonella Species in Bat Ectoparasites Collected from Yunnan Province, China.

  • Guopeng Kuang‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2022‎

Bartonella species has been validated as blood-borne bacteria in mammals and has a substantial opportunity to be harbored by a variety of hematophagous arthropod vectors. Bats, along with their ectoparasites, are recognized worldwide as one of the natural reservoir hosts for these bacteria. However, there have been few investigations of Bartonella bacteria toward a broad range of obligated bat ectoparasites in China. Here, molecular detection of Bartonella species was performed to survey the infection among bat ectoparasites and follow-up phylogenetic analyses to further characterize the evolutionary relationships of the genus. A total of 434 bat ectoparasites involving four types of arthropods, namely, bat mites, bat tick, bat fleas, and bat flies (further divided into traditionally fly-like bat flies and wingless bat flies) were collected in 10 trapping sites in Yunnan Province, southwestern China. Bartonella was detected by PCR amplification and sequencing through four gene target fragments (gltA, ftsZ, rpoB, and ITS). Accordingly, diverse Bartonella species were discovered, including both the validated species and the novel genotypes, which were characterized into several geographical regions with high prevalence. Phylogenetic analyses based on gltA and multi-locus concatenated sequences both demonstrated strong phylogeny-trait associations of Bartonella species from bats and their parasitic arthropods, suggesting the occurrence of host switches and emphasizing the potential connecting vector role of these ectoparasites. Nevertheless, the maintenance and transmission of Bartonella in both bat and hemoparasite populations have not been fully understood, as well as the risk of spillage to humans, which warrants in-depth experimental studies focusing on these mammals and their ectoparasites.


Development of Immunoassays for Detection of Francisella tularensis Lipopolysaccharide in Tularemia Patient Samples.

  • Emily E Hannah‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Francisella tularensis is the causative agent of tularemia, a zoonotic bacterial infection that is often fatal if not diagnosed and treated promptly. Natural infection in humans is relatively rare, yet persistence in animal reservoirs, arthropod vectors, and water sources combined with a low level of clinical recognition make tularemia a serious potential threat to public health in endemic areas. F. tularensis has also garnered attention as a potential bioterror threat, as widespread dissemination could have devastating consequences on a population. A low infectious dose combined with a wide range of symptoms and a short incubation period makes timely diagnosis of tularemia difficult. Current diagnostic techniques include bacterial culture of patient samples, PCR and serological assays; however, these techniques are time consuming and require technical expertise that may not be available at the point of care. In the event of an outbreak or exposure a more efficient diagnostic platform is needed. The lipopolysaccharide (LPS) component of the bacterial outer leaflet has been identified previously by our group as a potential diagnostic target. For this study, a library of ten monoclonal antibodies specific to F. tularensis LPS were produced and confirmed to be reactive with LPS from type A and type B strains. Antibody pairs were tested in an antigen-capture enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay format to select the most sensitive pairings. The antigen-capture ELISA was then used to detect and quantify LPS in serum samples from tularemia patients for the first time to determine the viability of this molecule as a diagnostic target. In parallel, prototype lateral flow immunoassays were developed, and reactivity was assessed, demonstrating the potential utility of this assay as a rapid point-of-care test for diagnosis of tularemia.


Ornithodoros sonrai Soft Ticks and Associated Bacteria in Senegal.

  • El Hadji Ibrahima Ndiaye‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

The soft ticks, Ornithodoros sonrai, are known as vectors of the tick-borne relapsing fever caused by Borrelia spp. and have also been reported to carry other micro-organisms. The objective of this study was to collect and to identify O. sonrai ticks and to investigate the micro-organisms associated with them. In 2019, an investigation of burrows within human dwellings was conducted in 17 villages in the Niakhar area and in 15 villages in the Sine-Saloum area in the Fatick region of Senegal. Ticks collected from the burrows were identified morphologically and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Micro-organism screening was performed by bacteria-specific qPCR and some identifications were made by standard PCR and gene sequencing. O. sonrai ticks were found in 100% (17/17) of the villages surveyed in the Niakhar area and in 66% (10/15) of the villages in the Sine-Saloum area. A total of 1275 soft tick specimens were collected from small mammal burrows. The ticks collected were morphologically identified as O. sonrai. About 20% (259/1275) of the specimens were also submitted to MALDI-TOF MS for identification. Among the resulting MS profiles, 87% (139/159) and 95% (95/100) were considered good quality specimens, preserved in alcohol and silica gel, respectively. All spectra of good quality were tested against our MALDI-TOF MS arthropod spectra database and identified as O. sonrai species, corroborating the morphological classification. The carriage of four micro-organisms was detected in the ticks with a high prevalence of Bartonella spp., Anaplasmataceae, and Borrelia spp. of 35, 28, and 26%, respectively, and low carriage of Coxiella burnetii (2%). This study highlights the level of tick infestation in domestic burrows, the inventory of pathogens associated with the O. sonrai tick, and the concern about the potential risk of tick involvement in the transmission of these pathogens in Senegal.


Zika Virus Infection Alters Gene Expression and Poly-Adenylation Patterns in Placental Cells.

  • Stephanea L Sotcheff‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2022‎

Flaviviruses are small RNA viruses that are mainly transmitted via arthropod vectors and are found in tropic and sub-tropical regions. Most infections are asymptomatic (90-95%), but symptoms can be as severe as hemorrhagic fever and encephalitis. One recently emerged flavivirus is Zika virus (ZIKV), which was originally isolated from rhesus monkeys in Uganda roughly 70 years ago but has recently spread east, reaching S. America in 2015-2016. This outbreak was associated with the development of Guillain-Barré syndrome in adults and microcephaly in infants born to expectant mothers infected early in pregnancy. ZIKV must traverse the placenta to impact the development of the fetus, but the mechanisms responsible are unknown. While flaviviruses are known to disrupt splicing patterns in host cells, little is known about how flaviviruses such as ZIKV impact the alternative polyadenylation (APA) of host transcripts. This is important as APA is well-established as a mechanism in the regulation of mRNA metabolism and translation. Thus, we sought to characterize transcriptomic changes including APA in human placental (JEG3) cells in response to ZIKV infection using Poly(A)-ClickSeq (PAC-Seq). We used our differential Poly(A)-cluster (DPAC) analysis pipeline to characterize changes in differential gene expression, alternative poly-adenylation (APA) and the use of alternative terminal exons. We identified 98 upregulated genes and 28 downregulated genes. Pathway enrichment analysis indicated that many RNA processing and immune pathways were upregulated in ZIKV-infected JEG3 cells. We also updated DPAC to provide additional metrics of APA including the percentage-distal usage index (PDUI), which revealed that APA was extensive and the 3' UTRs of 229 genes were lengthened while 269 were shortened. We further found that there were 214 upregulated and 59 downregulated poly(A)-clusters (PACs). We extracted the nucleotide sequences surrounding these PACs and found that the canonical signals for poly-adenylation (binding site for poly-A binding protein (PABP) upstream and a GU-rich region down-stream of the PAC) were only enriched in the downregulated PACs. These results indicate that ZIKV infection makes JEG3 cells more permissive to non-canonical poly-adenylation signals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: