2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Integrative analyses identify modulators of response to neoadjuvant aromatase inhibitors in patients with early breast cancer.

  • Elena López-Knowles‎ et al.
  • Breast cancer research : BCR‎
  • 2015‎

Aromatase inhibitors (AIs) are a vital component of estrogen receptor positive (ER+) breast cancer treatment. De novo and acquired resistance, however, is common. The aims of this study were to relate patterns of copy number aberrations to molecular and proliferative response to AIs, to study differences in the patterns of copy number aberrations between breast cancer samples pre- and post-AI neoadjuvant therapy, and to identify putative biomarkers for resistance to neoadjuvant AI therapy using an integrative analysis approach.


The aromatase inhibitor letrozole and inhibitors of insulin-like growth factor I receptor synergistically induce apoptosis in in vitro models of estrogen-dependent breast cancer.

  • Joanna Lisztwan‎ et al.
  • Breast cancer research : BCR‎
  • 2008‎

Endocrine-dependent, estrogen receptor positive breast cancer cells proliferate in response to estrogens, synthesized by the cytochrome p450 aromatase enzyme. Letrozole is a potent nonsteroidal aromatase inhibitor that is registered for the treatment of postmenopausal women with advanced metastatic breast cancers and in the neoadjuvant, early, and extended adjuvant indications. Because crosstalk exists between estrogen receptor and insulin-like growth factor I receptor (IGF-IR), the effect of combining a selective IGF-IR inhibitor (NVP-AEW541) with letrozole was assessed in two independent in vitro models of estrogen-dependent breast cancer.


Molecular response to aromatase inhibitor treatment in primary breast cancer.

  • Alan Mackay‎ et al.
  • Breast cancer research : BCR‎
  • 2007‎

Aromatase inhibitors such as anastrozole and letrozole are highly effective suppressants of estrogen synthesis in postmenopausal women and are the most effective endocrine treatments for hormone receptor positive breast cancer in such women. Little is known of the molecular effects of these agents on human breast carcinomas in vivo.


Nonhypoxic regulation and role of hypoxia-inducible factor 1 in aromatase inhibitor resistant breast cancer.

  • Armina A Kazi‎ et al.
  • Breast cancer research : BCR‎
  • 2014‎

Although aromatase inhibitors (AIs; for example, letrozole) are highly effective in treating estrogen receptor positive (ER+) breast cancer, a significant percentage of patients either do not respond to AIs or become resistant to them. Previous studies suggest that acquired resistance to AIs involves a switch from dependence on ER signaling to dependence on growth factor-mediated pathways, such as human epidermal growth factor receptor-2 (HER2). However, the role of HER2, and the identity of other relevant factors that may be used as biomarkers or therapeutic targets remain unknown. This study investigated the potential role of transcription factor hypoxia inducible factor 1 (HIF-1) in acquired AI resistance, and its regulation by HER2.


The lncRNA MIR2052HG regulates ERα levels and aromatase inhibitor resistance through LMTK3 by recruiting EGR1.

  • Junmei Cairns‎ et al.
  • Breast cancer research : BCR‎
  • 2019‎

Our previous genome-wide association study using the MA.27 aromatase inhibitors adjuvant trial identified SNPs in the long noncoding RNA MIR2052HG associated with breast cancer-free interval. MIR2052HG maintained ERα both by promoting AKT/FOXO3-mediated ESR1 transcription and by limiting ubiquitin-mediated ERα degradation. Our goal was to further elucidate MIR2052HG's mechanism of action.


Targeting interferon response genes sensitizes aromatase inhibitor resistant breast cancer cells to estrogen-induced cell death.

  • Hye Joung Choi‎ et al.
  • Breast cancer research : BCR‎
  • 2015‎

Estrogen deprivation using aromatase inhibitors (AIs) is currently the standard of care for postmenopausal women with hormone receptor-positive breast cancer. Unfortunately, the majority of patients treated with AIs eventually develop resistance, inevitably resulting in patient relapse and, ultimately, death. The mechanism by which resistance occurs is still not completely known, however, recent studies suggest that impaired/defective interferon signaling might play a role. In the present study, we assessed the functional role of IFITM1 and PLSCR1; two well-known interferon response genes in AI resistance.


MicroRNA-125b upregulation confers aromatase inhibitor resistance and is a novel marker of poor prognosis in breast cancer.

  • Paul Vilquin‎ et al.
  • Breast cancer research : BCR‎
  • 2015‎

Increasing evidence indicates that microRNAs (miRNAs) are important players in oncogenesis. Considering the widespread use of aromatase inhibitors (AIs) in endocrine therapy as a first-line treatment for postmenopausal estrogen receptor α-positive breast cancer patients, identifying deregulated expression levels of miRNAs in association with AI resistance is of utmost importance.


Nintedanib plus letrozole in early breast cancer: a phase 0/I pharmacodynamic, pharmacokinetic, and safety clinical trial of combined FGFR1 and aromatase inhibition.

  • Miguel Quintela-Fandino‎ et al.
  • Breast cancer research : BCR‎
  • 2019‎

The combined use of a FGFR1 blocker and aromatase inhibitors is appealing for treating breast cancer patients with FGFR1 amplification. However, no pharmacodynamic studies have addressed the effects of this combined target modulation. We conducted a phase 0/I clinical trial in an adjuvant setting, with the goal of obtaining pharmacodynamic proof of the effects of combined aromatase and FGFR1 inhibition and to establish the RP2D for nintedanib combined with letrozole.


Oestrogen deprivation induces chemokine production and immune cell recruitment in in vitro and in vivo models of oestrogen receptor-positive breast cancer.

  • Jody Hazlett‎ et al.
  • Breast cancer research : BCR‎
  • 2021‎

Oestrogen receptor-positive (ER+) breast cancer is commonly treated using endocrine therapies such as aromatase inhibitors which block synthesis of oestradiol, but the influence of this therapy on the immune composition of breast tumours has not been fully explored. Previous findings suggest that tumour infiltrating lymphocytes and immune-related gene expression may be altered by treatment with aromatase inhibitors. However, whether these changes are a direct result of impacts on the host immune system or mediated through tumour cells is not known. We aimed to investigate the effect of oestrogen deprivation on the expression of chemokines and immune infiltration in vitro and in an ER+ immunocompetent mouse model.


Involvement of maternal embryonic leucine zipper kinase (MELK) in mammary carcinogenesis through interaction with Bcl-G, a pro-apoptotic member of the Bcl-2 family.

  • Meng-Lay Lin‎ et al.
  • Breast cancer research : BCR‎
  • 2007‎

Cancer therapies directed at specific molecular targets in signaling pathways of cancer cells, such as tamoxifen, aromatase inhibitors and trastuzumab, have proven useful for treatment of advanced breast cancers. However, increased risk of endometrial cancer with long-term tamoxifen administration and of bone fracture due to osteoporosis in postmenopausal women undergoing aromatase inhibitor therapy are recognized side effects. These side effects as well as drug resistance make it necessary to search for novel molecular targets for drugs on the basis of well-characterized mechanisms of action.


Key regulators of lipid metabolism drive endocrine resistance in invasive lobular breast cancer.

  • Tian Du‎ et al.
  • Breast cancer research : BCR‎
  • 2018‎

Invasive lobular breast carcinoma (ILC) is a histological subtype of breast cancer that is characterized by loss of E-cadherin and high expression of estrogen receptor alpha (ERα). In many cases, ILC is effectively treated with adjuvant aromatase inhibitors (AIs); however, acquired AI resistance remains a significant problem.


Ribociclib for the first-line treatment of advanced hormone receptor-positive breast cancer: a review of subgroup analyses from the MONALEESA-2 trial.

  • Gabriel N Hortobagyi‎
  • Breast cancer research : BCR‎
  • 2018‎

Endocrine therapy is recommended for patients with hormone receptor-positive (HR+) advanced and metastatic breast cancer without visceral crisis (symptomatic visceral disease). However, many patients experience disease progression during treatment, and most patients eventually develop endocrine resistance. Therefore, it is important to identify treatment options that prolong the effectiveness of first-line endocrine therapies. Ribociclib is an orally bioavailable cyclin-dependent kinase (CDK) 4/6 inhibitor that has been approved for use in combination with an aromatase inhibitor for the treatment of HR+, human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer. This approval is based on findings from the MONALEESA-2 study, a double-blind, placebo-controlled, randomized phase 3 trial (NCT01958021) in which first-line therapy with ribociclib + letrozole significantly improved progression-free survival (PFS) compared with placebo + letrozole in patients with HR+/HER2- advanced breast cancer. This review will discuss the overall findings from the MONALEESA-2 study and will provide a summarized analysis of results from the available subgroups in the study by age, visceral metastases, bone-only disease, de novo disease, and prior therapy. On the basis of these data, ribociclib has established itself as a beneficial treatment option for these different populations. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01958021 . Registered on 8 October 2013.


Prognostic and predictive value of androgen receptor expression in postmenopausal women with estrogen receptor-positive breast cancer: results from the Breast International Group Trial 1-98.

  • Kevin H Kensler‎ et al.
  • Breast cancer research : BCR‎
  • 2019‎

The androgen receptor (AR) is an emerging prognostic marker and therapeutic target in breast cancer. AR is expressed in 60-80% of breast cancers, with higher prevalence among estrogen receptor-positive (ER+) tumors. Androgen treatment inhibits ER signaling in ER+/AR+ breast cancer cell lines, and AR expression is associated with improved survival for this subtype in epidemiologic studies. However, whether AR expression modifies the efficacy of selective ER modulators or aromatase inhibitors for ER+ cancers remains unclear.


Chemopreventive effects of celecoxib are limited to hormonally responsive mammary carcinomas in the neu-induced retroviral rat model.

  • Stephan Woditschka‎ et al.
  • Breast cancer research : BCR‎
  • 2008‎

While current breast cancer chemoprevention strategies using selective estrogen response modulators and aromatase inhibitors are quite successful, their effects are limited to hormonally responsive breast cancer. Hormonally nonresponsive breast cancer (including estrogen receptor-negative cancer) is associated with poor prognosis for patients, and few chemoprevention agents exist for this type of cancer. The cyclooxygenase-2 inhibitor celecoxib (Celebrex) is a nonsteroidal anti-inflammatory drug and as such is a potential candidate for the prevention of hormonally nonresponsive breast cancer.


Roscovitine confers tumor suppressive effect on therapy-resistant breast tumor cells.

  • Binoj C Nair‎ et al.
  • Breast cancer research : BCR‎
  • 2011‎

Current clinical strategies for treating hormonal breast cancer involve the use of anti-estrogens that block estrogen receptor (ER)α functions and aromatase inhibitors that decrease local and systemic estrogen production. Both of these strategies improve outcomes for ERα-positive breast cancer patients, however, development of therapy resistance remains a major clinical problem. Divergent molecular pathways have been described for this resistant phenotype and interestingly, the majority of downstream events in these resistance pathways converge upon the modulation of cell cycle regulatory proteins including aberrant activation of cyclin dependent kinase 2 (CDK2). In this study, we examined whether the CDK inhibitor roscovitine confers a tumor suppressive effect on therapy-resistant breast epithelial cells.


Loss of pigment epithelium-derived factor: a novel mechanism for the development of endocrine resistance in breast cancer.

  • Rifat Jan‎ et al.
  • Breast cancer research : BCR‎
  • 2012‎

Despite the benefits of endocrine therapies such as tamoxifen and aromatase inhibitors in treating estrogen receptor (ER) alpha-positive breast cancer, many tumors eventually become resistant. The molecular mechanisms governing resistance remain largely unknown. Pigment epithelium-derived factor (PEDF) is a multifunctional secreted glycoprotein that displays broad anti-tumor activity based on dual targeting of the tumor microenvironment (anti-angiogenic action) and the tumor cells (direct anti-tumor action). Recent studies indicate that PEDF expression is significantly reduced in several tumor types, including breast cancer, and that its reduction is associated with disease progression and poor patient outcome. In the current study, we investigated the role of PEDF in the development of endocrine resistance in breast cancer.


Buthionine sulfoximine sensitizes antihormone-resistant human breast cancer cells to estrogen-induced apoptosis.

  • Joan S Lewis-Wambi‎ et al.
  • Breast cancer research : BCR‎
  • 2008‎

Estrogen deprivation using aromatase inhibitors is one of the standard treatments for postmenopausal women with estrogen receptor (ER)-positive breast cancer. However, one of the consequences of prolonged estrogen suppression is acquired drug resistance. Our group is interested in studying antihormone resistance and has previously reported the development of an estrogen deprived human breast cancer cell line, MCF-7:5C, which undergoes apoptosis in the presence of estradiol. In contrast, another estrogen deprived cell line, MCF-7:2A, appears to have elevated levels of glutathione (GSH) and is resistant to estradiol-induced apoptosis. In the present study, we evaluated whether buthionine sulfoximine (BSO), a potent inhibitor of glutathione (GSH) synthesis, is capable of sensitizing antihormone resistant MCF-7:2A cells to estradiol-induced apoptosis.


Anti-oestrogens but not oestrogen deprivation promote cellular invasion in intercellular adhesion-deficient breast cancer cells.

  • Annabel C Borley‎ et al.
  • Breast cancer research : BCR‎
  • 2008‎

Anti-oestrogens have been the mainstay of therapy in patients with oestrogen-receptor (ER) positive breast cancer and have provided significant improvements in survival. However, their benefits are limited by tumour recurrence in a significant proportion of initially drug-responsive breast cancer patients because of acquired anti-oestrogen resistance. Relapse on such therapies clinically presents as local and/or regional recurrences, frequently with distant metastases, and the prognosis for these patients is poor. The selective ER modulator, tamoxifen, classically exerts gene inhibitory effects during the drug-responsive phase in ER-positive breast cancer cells. Paradoxically, this drug is also able to induce the expression of genes, which in the appropriate cell context may contribute to an adverse cell phenotype. Here we have investigated the effects of tamoxifen and fulvestrant treatment on invasive signalling and compared this with the direct effects of oestrogen withdrawal to mimic the action of aromatase inhibitors.


New generation breast cancer cell lines developed from patient-derived xenografts.

  • Jessica Finlay-Schultz‎ et al.
  • Breast cancer research : BCR‎
  • 2020‎

Breast cancer is a highly heterogeneous disease characterized by multiple histologic and molecular subtypes. While a myriad of breast cancer cell lines have been developed over the past 60 years, estrogen receptor alpha (ER)+ disease and some mutations associated with this subtype remain underrepresented. Here we describe six breast cancer cell lines derived from patient-derived xenografts (PDX) and their general characteristics.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: