Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

3'-Biotin-tagged microRNA-27 does not associate with Argonaute proteins in cells.

  • Yang Eric Guo‎ et al.
  • RNA (New York, N.Y.)‎
  • 2014‎

Synthetic 3'-biotin-tagged microRNAs (miRNAs) have often been used to select interacting messenger RNA (mRNA) and noncoding RNA (ncRNA) targets. Here, we examined the extent of association of 3'-end biotinylated miR-27 with Argonaute (Ago) proteins in transfected human cells using a coimmunoprecipitation assay followed by Northern blot analysis. We report that biotinylated miR-27 does not efficiently associate with Ago compared to unmodified miR-27. These results suggest that 3'-end biotin-modified miRNAs are questionable monitors of miRNA function in cells.


Functional analyses of phosphorylation events in human Argonaute 2.

  • Joaquin Lopez-Orozco‎ et al.
  • RNA (New York, N.Y.)‎
  • 2015‎

Argonaute 2 (Ago2) protein is a central effector of RNA interference (RNAi) pathways and regulates mammalian genes on a global level. The mechanisms of Ago2-mediated silencing are well understood, but less is known about its regulation. Recent reports indicate that phosphorylation significantly affects Ago2 activity. Here, we investigated the effect of mutating all known phospho-residues within Ago2 on its localization and activity. Ago2 associates with two different cytoplasmic RNA granules known as processing bodies (P-bodies) and stress granules, but the nature of this phenomenon is controversial. We report that replacing serine with a phospho-mimetic aspartic acid at position 798 completely abrogates association of Ago2 with P-bodies and stress granules. The effect of this mutation on its activity in gene silencing was modest, which was surprising because association of Ago2 with cytoplasmic RNA granules is thought to be a consequence of its role in RNAi. As such, our data indicate that targeting of Ago2 to P-bodies and stress granules is separable from its role in RNAi and likely requires dynamic phosphorylation of serine 798.


Argonaute binding within human nuclear RNA and its impact on alternative splicing.

  • Yongjun Chu‎ et al.
  • RNA (New York, N.Y.)‎
  • 2021‎

Mammalian RNA interference (RNAi) is often linked to the regulation of gene expression in the cytoplasm. Synthetic RNAs, however, can also act through the RNAi pathway to regulate transcription and splicing. While nuclear regulation by synthetic RNAs can be robust, a critical unanswered question is whether endogenous functions for nuclear RNAi exist in mammalian cells. Using enhanced crosslinking immunoprecipitation (eCLIP) in combination with RNA sequencing (RNA-seq) and multiple AGO knockout cell lines, we mapped AGO2 protein binding sites within nuclear RNA. The strongest AGO2 binding sites were mapped to micro RNAs (miRNAs). The most abundant miRNAs were distributed similarly between the cytoplasm and nucleus, providing no evidence for mechanisms that facilitate localization of miRNAs in one compartment versus the other. Beyond miRNAs, most statistically significant AGO2 binding was within introns. Splicing changes were confirmed by RT-PCR and recapitulated by synthetic miRNA mimics complementary to the sites of AGO2 binding. These data support the hypothesis that miRNAs can control gene splicing. While nuclear RNAi proteins have the potential to be natural regulatory mechanisms, careful study will be necessary to identify critical RNA drivers of normal physiology and disease.


Effects of the PIWI/MID domain of Argonaute protein on the association of miRNAi's seed base with the target.

  • Zhen Wang‎ et al.
  • RNA (New York, N.Y.)‎
  • 2019‎

The small interfering RNAs (siRNA) or microRNAs (miRNA) incorporated into the RNA-induced silencing complex with the Argonaute (Ago) protein associates with target mRNAs through base-pairing, which leads to the cleavage or knockdown of the target mRNA. The seed region of the s(m)iRNA is crucial for target recognition. In this work, a molecular dynamic simulation was utilized to study the thermodynamics and kinetic properties of the third seed base binding to the target in the presence of the PIWI/MID domain of Ago. The results showed that in the presence of the PIWI/MID domain, the entropy and enthalpy changes for the association of the seed base with the target were smaller than those in the absence of protein. The binding affinity was increased due to the reduced entropy penalty, which resulted from the preorganization of the seed base into the A-helix form. In the presence of the protein, the association barrier resulting from the unfavorable entropy loss and the dissociation barrier coming from the destruction of hydrogen bonding and base-stacking interactions were lower than those in the absence of the protein. These results indicate that the seed region is crucial for fast recognition and association with the correct target.


Consequences of depleting TNRC6, AGO, and DROSHA proteins on expression of microRNAs.

  • Krystal C Johnson‎ et al.
  • RNA (New York, N.Y.)‎
  • 2023‎

The potential for microRNAs (miRNAs) to regulate gene expression remains incompletely understood. DROSHA initiates the biogenesis of miRNAs while variants of Argonaute (AGO) and trinucleotide repeat containing six (TNRC6) family proteins form complexes with miRNAs to facilitate RNA recognition and gene regulation. Here we investigate the fate of miRNAs in the absence of these critical RNAi protein factors. Knockout of DROSHA expression reduces levels of some miRNAs annotated in miRBase but not others. The identity of miRNAs with reduced expression matches the identity of miRNAs previously identified by experimental approaches. The MirGeneDB resource offers the closest alignment with experimental results. In contrast, the loss of TNRC6 proteins had much smaller effects on miRNA levels. Knocking out AGO proteins, which directly contact the mature miRNA, decreased expression of the miRNAs most strongly associated with AGO2 as determined from enhanced crosslinking immunoprecipitation (AGO2-eCLIP). Evaluation of miRNA binding to endogenously expressed AGO proteins revealed that miRNA:AGO association was similar for AGO1, AGO2, AGO3, and AGO4. Our data emphasize the need to evaluate annotated miRNAs based on approximate cellular abundance, DROSHA-dependence, and physical association with AGO when forming hypotheses related to their function.


The MID-PIWI module of Piwi proteins specifies nucleotide- and strand-biases of piRNAs.

  • Elisa Cora‎ et al.
  • RNA (New York, N.Y.)‎
  • 2014‎

Piwi-interacting RNAs (piRNAs) guide Piwi Argonautes to suppress transposon activity in animal gonads. Known piRNA populations are extremely complex, with millions of individual sequences present in a single organism. Despite this complexity, specific Piwi proteins incorporate piRNAs with distinct nucleotide- and transposon strand-biases (antisense or sense) of unknown origin. Here, we examined the contribution of structural domains in Piwi proteins toward defining these biases. We report the first crystal structure of the MID domain from a Piwi Argonaute and use docking experiments to show its ability to specify recognition of 5' uridine (1U-bias) of piRNAs. Mutational analyses reveal the importance of 5' end-recognition within the MID domain for piRNA biogenesis in vivo. Finally, domain-swapping experiments uncover an unexpected role for the MID-PIWI module of a Piwi protein in dictating the transposon strand-orientation of its bound piRNAs. Our work identifies structural features that allow distinguishing individual Piwi members during piRNA biogenesis.


tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner.

  • Canan Kuscu‎ et al.
  • RNA (New York, N.Y.)‎
  • 2018‎

tRNA related RNA fragments (tRFs), also known as tRNA-derived RNAs (tdRNAs), are abundant small RNAs reported to be associated with Argonaute proteins, yet their function is unclear. We show that endogenous 18 nucleotide tRFs derived from the 3' ends of tRNAs (tRF-3) post-transcriptionally repress genes in HEK293T cells in culture. tRF-3 levels increase upon parental tRNA overexpression. This represses target genes with a sequence complementary to the tRF-3 in the 3' UTR. The tRF-3-mediated repression is Dicer-independent, Argonaute-dependent, and the targets are recognized by sequence complementarity. Furthermore, tRF-3:target mRNA pairs in the RNA induced silencing complex associate with GW182 proteins, known to repress translation and promote the degradation of target mRNAs. RNA-seq demonstrates that endogenous target genes are specifically decreased upon tRF-3 induction. Therefore, Dicer-independent tRF-3s, generated upon tRNA overexpression, repress genes post-transcriptionally through an Argonaute-GW182 containing RISC via sequence matches with target mRNAs.


Tupaia small RNAs provide insights into function and evolution of RNAi-based transposon defense in mammals.

  • David Rosenkranz‎ et al.
  • RNA (New York, N.Y.)‎
  • 2015‎

Argonaute proteins comprising Piwi-like and Argonaute-like proteins and their guiding small RNAs combat mobile DNA on the transcriptional and post-transcriptional level. While Piwi-like proteins and associated piRNAs are generally restricted to the germline, Argonaute-like proteins and siRNAs have been linked with transposon control in the germline as well as in the soma. Intriguingly, evolution has realized distinct Argonaute subfunctionalization patterns in different species but our knowledge about mammalian RNA interference pathways relies mainly on findings from the mouse model. However, mice differ from other mammals by absence of functional Piwil3 and expression of an oocyte-specific Dicer isoform. Thus, studies beyond the mouse model are required for a thorough understanding of function and evolution of mammalian RNA interference pathways. We high-throughput sequenced small RNAs from the male Tupaia belangeri germline, which represents a close outgroup to primates, hence phylogenetically links mice with humans. We identified transposon-derived piRNAs as well as siRNAs clearly contrasting the separation of piRNA- and siRNA-pathways into male and female germline as seen in mice. Genome-wide analysis of tree shrew transposons reveal that putative siRNAs map to transposon sites that form foldback secondary structures thus representing suitable Dicer substrates. In contrast piRNAs target transposon sites that remain accessible. With this we provide a basic mechanistic explanation how secondary structure of transposon transcripts influences piRNA- and siRNA-pathway utilization. Finally, our analyses of tree shrew piRNA clusters indicate A-Myb and the testis-expressed transcription factor RFX4 to be involved in the transcriptional regulation of mammalian piRNA clusters.


Generation of catalytic human Ago4 identifies structural elements important for RNA cleavage.

  • Judith Hauptmann‎ et al.
  • RNA (New York, N.Y.)‎
  • 2014‎

Argonaute proteins bind small RNAs and mediate cleavage of complementary target RNAs. The human Argonaute protein Ago4 is catalytically inactive, although it is highly similar to catalytic Ago2. Here, we have generated Ago2-Ago4 chimeras and analyzed their cleavage activity in vitro. We identify several specific features that inactivate Ago4: the catalytic center, short sequence elements in the N-terminal domain, and an Ago4-specific insertion in the catalytic domain. In addition, we show that Ago2-mediated cleavage of the noncanonical miR-451 precursor can be carried out by any catalytic human Ago protein. Finally, phylogenetic analyses establish evolutionary distances between the Ago proteins. Interestingly, these distances do not fully correlate with the structural changes inactivating them, suggesting functional adaptations of individual human Ago proteins.


Molecular basis for GIGYF-TNRC6 complex assembly.

  • Meghna Sobti‎ et al.
  • RNA (New York, N.Y.)‎
  • 2023‎

The GIGYF proteins interact with 4EHP and RNA-associated proteins to elicit transcript-specific translational repression. However, the mechanism by which the GIGYF1/2-4EHP complex is recruited to its target transcripts remain unclear. Here, we report the crystal structures of the GYF domains from GIGYF1 and GIGYF2 in complex with proline-rich sequences from the miRISC-binding proteins TNRC6C and TNRC6A, respectively. The TNRC6 proline-rich motifs bind to a conserved array of aromatic residues on the surface of the GIGYF1/2 GYF domains, thereby bridging 4EHP to Argonaute-miRNA complexes. Our structures also reveal a phenylalanine residue conserved from yeast to human GYF domains that contributes to GIGYF2 thermostability. The molecular details we outline here are likely to be conserved between GIGYF1/2 and other RNA-binding proteins to elicit 4EHP-mediated repression in different biological contexts.


In vitro reconstitution of chaperone-mediated human RISC assembly.

  • Ken Naruse‎ et al.
  • RNA (New York, N.Y.)‎
  • 2018‎

To silence target mRNAs, small RNAs and Argonaute (Ago) proteins need to be assembled into RNA-induced silencing complexes (RISCs). Although the assembly of Drosophila melanogaster RISC was recently reconstituted by Ago2, the Dicer-2/R2D2 heterodimer, and five chaperone proteins, the absence of a reconstitution system for mammalian RISC assembly has posed analytical challenges. Here we describe reconstitution of human RISC assembly using Ago2 and five recombinant chaperone proteins: Hsp90β, Hsc70, Hop, Dnaja2, and p23. Our data show that ATP hydrolysis by both Hsp90β and Hsc70 is required for RISC assembly of small RNA duplexes but not for that of single-stranded RNAs. The reconstitution system lays the groundwork for further studies of small RNA-mediated gene silencing in mammals.


Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells.

  • Roya Kalantari‎ et al.
  • RNA (New York, N.Y.)‎
  • 2016‎

Argonaute 2 (AGO2), the catalytic engine of RNAi, is typically associated with inhibition of translation in the cytoplasm. AGO2 has also been implicated in nuclear processes including transcription and splicing. There has been little insight into AGO2's nuclear interactions or how they might differ relative to cytoplasm. Here we investigate the interactions of cytoplasmic and nuclear AGO2 using semi-quantitative mass spectrometry. Mass spectrometry often reveals long lists of candidate proteins, complicating efforts to rigorously discriminate true interacting partners from artifacts. We prioritized candidates using orthogonal analytical strategies that compare replicate mass spectra of proteins associated with Flag-tagged and endogenous AGO2. Interactions with TRNC6A, TRNC6B, TNRC6C, and AGO3 are conserved between nuclei and cytoplasm. TAR binding protein interacted stably with cytoplasmic AGO2 but not nuclear AGO2, consistent with strand loading in the cytoplasm. Our data suggest that interactions between functionally important components of RNAi machinery are conserved between the nucleus and cytoplasm but that accessory proteins differ. Orthogonal analysis of mass spectra is a powerful approach to streamlining identification of protein partners.


Impact of scaffolding protein TNRC6 paralogs on gene expression and splicing.

  • Samantha T Johnson‎ et al.
  • RNA (New York, N.Y.)‎
  • 2021‎

TNRC6 is a scaffolding protein that bridges interactions between small RNAs, argonaute (AGO) protein, and effector proteins to control gene expression. There are three paralogs in mammalian cells, TNRC6A, TNRC6B, and TNRC6C These paralogs have ∼40% amino acid sequence identity and the extent of their unique or redundant functions is unclear. Here, we use knockout cell lines, enhanced crosslinking immunoprecipitation (eCLIP), and high-throughput RNA sequencing (RNA-seq) to explore the roles of TNRC6 paralogs in RNA-mediated control of gene expression. We find that the paralogs are largely functionally redundant and changes in levels of gene expression are well-correlated with those observed in AGO knockout cell lines. Splicing changes observed in AGO knockout cell lines are also observed in TNRC6 knockout cells. These data further define the roles of the TNRC6 isoforms as part of the RNA interference (RNAi) machinery.


Reversing the miRNA -5p/-3p stoichiometry reveals physiological roles and targets of miR-140 miRNAs.

  • Cameron Young‎ et al.
  • RNA (New York, N.Y.)‎
  • 2022‎

The chondrocyte-specific miR-140 miRNAs are necessary for normal endochondral bone growth in mice. miR-140 deficiency causes dwarfism and craniofacial deformity. However, the physiologically important targets of miR-140 miRNAs are still unclear. The miR-140 gene (Mir140) encodes three chondrocyte-specific microRNAs, miR-140-5p, derived from the 5' strand of primary miR-140, and miR140-3p.1 and -3p.2, derived from the 3' strand of primary miR-140. miR-140-3p miRNAs are 10 times more abundant than miR-140-5p likely due to the nonpreferential loading of miR-140-5p to Argonaute proteins. To differentiate the role of miR-140-5p and -3p miRNAs in endochondral bone development, two distinct mouse models, miR140-C > T, in which the first nucleotide of miR-140-5p was altered from cytosine to uridine, and miR140-CG, where the first two nucleotides of miR-140-3p were changed to cytosine and guanine, were created. These changes are expected to alter Argonaute protein loading preference of -5p and -3p to increase -5p loading and decrease -3p loading without changing the function of miR140-5p. These models presented a mild delay in epiphyseal development with delayed chondrocyte maturation. Using RNA-sequencing analysis of the two models, direct targets of miR140-5p, including Wnt11, were identified. Disruption of the predicted miR140-5p binding site in the 3' untranslated region of Wnt11 was shown to increase Wnt11 mRNA expression and caused a modest acceleration of epiphyseal development. These results show that the relative abundance of miRNA-5p and -3p can be altered by changing the first nucleotide of miRNAs in vivo, and this method can be useful to identify physiologically important miRNA targets.


miR-7 is recruited to the high molecular weight RNA-induced silencing complex in CD8+ T cells upon activation and suppresses IL-2 signaling.

  • Matilda Toivakka‎ et al.
  • RNA (New York, N.Y.)‎
  • 2023‎

Increasing evidence suggests mammalian Argonaute (Ago) proteins partition into distinct complexes within cells, but there is still little biochemical or functional understanding of the miRNAs differentially associated with these complexes. In naïve T cells, Ago2 is found almost exclusively in low molecular weight (LMW) complexes which are associated with miRNAs but not their target mRNAs. Upon T-cell activation, a proportion of these Ago2 complexes move into a newly formed high molecular weight (HMW) RNA-induced silencing complex (RISC), which is characterized by the presence of the GW182 protein that mediates translational repression. Here, we demonstrate distinct partitioning of miRNAs and isomiRs in LMW versus HMW RISCs upon antigen-mediated activation of CD8+ T cells. We identify miR-7 as highly enriched in HMW RISC and demonstrate that miR-7 inhibition leads to increased production of IL-2 and up-regulation of the IL-2 receptor, the transferrin receptor, CD71 and the amino acid transporter, CD98. Our data support a model where recruitment of miR-7 to HMW RISC restrains IL-2 signaling and the metabolic processes regulated by IL-2.


Sequestration of microRNA-mediated target repression by the Ago2-associated RNA-binding protein FAM120A.

  • Timothy J Kelly‎ et al.
  • RNA (New York, N.Y.)‎
  • 2019‎

Argonaute (Ago) proteins interact with various binding partners and play a pivotal role in microRNA (miRNA)-mediated silencing pathways. By utilizing immunoprecipitation followed by mass spectrometry to determine cytoplasmic Ago2 protein complexes in mouse embryonic stem cells (mESCs), we identified a putative RNA-binding protein FAM120A (also known as OSSA/C9ORF10) as an Ago2 interacting protein. Individual nucleotide resolution cross-linking and immunoprecipitation (iCLIP) analysis revealed that FAM120A binds to homopolymeric tracts in 3'-UTRs of about 2000 mRNAs, particularly poly(G) sequences. Comparison of FAM120A iCLIP and Ago2 iCLIP reveals that greater than one-third of mRNAs bound by Ago2 in mESCs are co-bound by FAM120A. Furthermore, such FAM120A-bound Ago2 target genes are not subject to Ago2-mediated target degradation. Reporter assays suggest that the 3'-UTRs of several FAM120A-bound miRNA target genes are less sensitive to Ago2-mediated target repression than those of FAM120A-unbound miRNA targets and FAM120A modulates them via its G-rich target sites. These findings suggest that Ago2 may exist in multiple protein complexes with varying degrees of functionality.


A noncanonical microRNA derived from the snaR-A noncoding RNA targets a metastasis inhibitor.

  • Daniel Stribling‎ et al.
  • RNA (New York, N.Y.)‎
  • 2021‎

MicroRNAs (miRNAs) are small noncoding RNAs that function as critical posttranscriptional regulators in various biological processes. While most miRNAs are generated from processing of long primary transcripts via sequential Drosha and Dicer cleavage, some miRNAs that bypass Drosha cleavage can be transcribed as part of another small noncoding RNA. Here, we develop the target-oriented miRNA discovery (TOMiD) bioinformatic analysis method to identify Drosha-independent miRNAs from Argonaute crosslinking and sequencing of hybrids (Ago-CLASH) data sets. Using this technique, we discovered a novel miRNA derived from a primate specific noncoding RNA, the small NF90 associated RNA A (snaR-A). The miRNA derived from snaR-A (miR-snaR) arises independently of Drosha processing but requires Exportin-5 and Dicer for biogenesis. We identify that miR-snaR is concurrently up-regulated with the full snaR-A transcript in cancer cells. Functionally, miR-snaR associates with Ago proteins and targets NME1, a key metastasis inhibitor, contributing to snaR-A's role in promoting cancer cell migration. Our findings suggest a functional link between a novel miRNA and its precursor noncoding RNA.


The capacity of target silencing by Drosophila PIWI and piRNAs.

  • Christina Post‎ et al.
  • RNA (New York, N.Y.)‎
  • 2014‎

Although Piwi proteins and Piwi-interacting RNAs (piRNAs) genetically repress transposable elements (TEs), it is unclear how the highly diverse piRNA populations direct Piwi proteins to silence TE targets without silencing the entire transcriptome. To determine the capacity of piRNA-mediated silencing, we introduced reporter genes into Drosophila OSS cells, which express microRNAs (miRNAs) and piRNAs, and compared the Piwi pathway to the Argonaute pathway in gene regulation. Reporter constructs containing several target sites that were robustly silenced by miRNAs were not silenced to the same degrees by piRNAs. However, another set of reporters we designed to enable a large number of both TE-directed and genic piRNAs to bind were robustly silenced by the PIWI/piRNA complex in OSS cells. These reporters show that a bulk of piRNAs are required to pair to the reporter's transcripts and not the reporter's DNA sequence to engage PIWI-mediated silencing. Following our genome-wide study of PIWI-regulated targets in OSS cells, we assessed candidate gene elements with our reporter platform. These results suggest TE sequences are the most direct of PIWI regulatory targets while coding genes are less directly affected by PIWI targeting. Finally, our study suggests that the PIWI transcriptional silencing mechanism triggers robust chromatin changes on targets with sufficient piRNA binding, and preferentially regulates TE transcripts because protein-coding transcripts lack a threshold of targeting by piRNA populations. This reporter platform will facilitate future dissections of the PIWI-targeting mechanism.


RNA:RNA interaction in ternary complexes resolved by chemical probing.

  • Elnaz Banijamali‎ et al.
  • RNA (New York, N.Y.)‎
  • 2023‎

RNA regulation can be performed by a second targeting RNA molecule, such as in the microRNA regulation mechanism. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) probes the structure of RNA molecules and can resolve RNA:protein interactions, but RNA:RNA interactions have not yet been addressed with this technique. Here, we apply SHAPE to investigate RNA-mediated binding processes in RNA:RNA and RNA:RNA-RBP complexes. We use RNA:RNA binding by SHAPE (RABS) to investigate microRNA-34a (miR-34a) binding its mRNA target, the silent information regulator 1 (mSIRT1), both with and without the Argonaute protein, constituting the RNA-induced silencing complex (RISC). We show that the seed of the mRNA target must be bound to the microRNA loaded into RISC to enable further binding of the compensatory region by RISC, while the naked miR-34a is able to bind the compensatory region without seed interaction. The method presented here provides complementary structural evidence for the commonly performed luciferase-assay-based evaluation of microRNA binding-site efficiency and specificity on the mRNA target site and could therefore be used in conjunction with it. The method can be applied to any nucleic acid-mediated RNA- or RBP-binding process, such as splicing, antisense RNA binding, or regulation by RISC, providing important insight into the targeted RNA structure.


A miRNA-responsive cell-free translation system facilitates isolation of hepatitis C virus miRNP complexes.

  • Shelton S Bradrick‎ et al.
  • RNA (New York, N.Y.)‎
  • 2013‎

Micro(mi)RNAs are 21- to 23-nt RNAs that regulate multiple biological processes. In association with Argonaute (Ago) proteins and other factors that form the RNA-induced silencing complex (RISC), miRNAs typically bind mRNA 3' untranslated regions (UTRs) and repress protein production through antagonizing translation and transcript stability. For a given mRNA-miRNA interaction, cis-acting RNA elements and trans-acting RNA-binding proteins (RBPs) may influence mRNA fate. This is particularly true of the hepatitis C virus (HCV) genome which interacts with miR-122, an abundant liver miRNA. miR-122 binding to HCV RNA considerably stimulates virus replication in cultured cells and primates, but the mechanism(s) and associated host factors required for enhancement of HCV replication have not been fully elucidated. We recapitulated miR-122-HCV RNA interactions in a cell-free translation system derived from cells that express miR-122. Specifically, lysates produced from HEK-293 cells that inducibly transcribe and process pri-miR-122 were characterized alongside those from isogenic cells lacking miR-122 expression. We observed a stimulatory effect of miR-122 on HCV reporter mRNAs in a manner that depended on expression of miR-122 and intact target sites within the HCV 5' UTR. We took advantage of this system to affinity-purify miR-122-HCV RNP complexes. Similar to functional assays, we found that association of immobilized HCV internal ribosome entry site (IRES) RNA with endogenous Ago2 requires both miR-122 expression and intact miR-122 target sites in cis. This combined approach may be generalizable to affinity purification of miRNP complexes for selected target mRNAs, allowing identification of miRNP components and RBPs that may contribute to regulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: