Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Neurosecretory protein GL in GIFT tilapia (Oreochromis niloticus): cDNA cloning, tissue distribution and effects of feeding on its expression.

  • Jinfeng Huang‎ et al.
  • General and comparative endocrinology‎
  • 2022‎

Neurosecretory protein GL (NPGL), a novel neuropeptide, has been identified in the hypothalamus of chicks and rodents. NPGL plays a crucial role in monitoring energetic status via the regulation of feeding and metabolism. However, no study on NPGL has been reported in fish thus far. In the present study, the full-length cDNA of NPGL was identified from the hypothalamus of GIFT tilapia (Oreochromis niloticus). The ORF of tilapia NPGL is 471 bp and encodes a precursor peptide with a size of 156 a.a, consisting of a 26 a.a signal peptide and an 82 a.a mature peptide. Tissue distribution profiles of npgl in tilapia were acquired using semiquantitative PCR and in situ hybridization (ISH). The results showed that the highest npgl mRNA is expressed in the telencephalic-preoptic complex, which comprises both the telencephalon and the anterior preoptic area (POA) of male tilapia, and in the ovary of female tilapia. In addition, in male tilapia, the ISH results showed that the cells containing npgl mRNA were distributed exclusively in the anterior periventricular pretectal nucleus (Ppa) of the POA. FISH results demonstrated that npgl mRNA is also expressed in the lateral tuberal nucleus of the hypothalamus (NLT). Real-time PCR showed that npgl mRNA significantly increased in the telencephalic-preoptic complex of male tilapia that were fasted for 24 h and then fed a full diet for 20 min compared with the unfed group. Results of the FISH study showed that parvocellular cells containing npgl mRNA in the Ppa of fed fish were apparently more abundant than those of the unfed group. Few npgl positive signals also appeared in the NLT after full feeding, where pomc mRNA is highly expressed. These results indicate that NPGL may be a short-term satiety factor in fish and that the coexpression of NPGL and POMC may be present in the hypothalamus of male tilapia.


Ctrp9 and adiponectin receptors in Nile tilapia (Oreochromis niloticus): Molecular cloning, tissue distribution and effects on reproductive genes.

  • Guokun Yang‎ et al.
  • General and comparative endocrinology‎
  • 2018‎

As the close paralog of adiponectin, C1q/TNF-Related Protein 9 (CTRP9) has been reported to be involved in the regulation of glucose and fat metabolism, immunization and endothelial cell functions. However, information regarding the actions of Ctrp9 on reproduction is extremely limited in fish. As a first step, Ctrp9, adiponectin receptor 1 (Adipor1) and Adipor2 were identified from Nile tilapia. The open reading frame (ORF) of ctrp9 was 1020 bp which encoded a 339 amino acids. Moreover, the ORFs of adipor1 and adipor2 were 1131 bp and 1134 bp encoding 376 and 377 amino acids, respectively. Tissue distribution showed that ctrp9 mRNA levels were highest in the kidney in both sexes. And, the expression of adipor1 and adipor2 were widely distributed in all tissues examined, exhibiting high levels in the brain, gonad, gut and stomach. In addition, intraperitoneal (i.p.) injection of gCtrp9 (globular Ctrp9) suppressed the hypothalamic expression of gnrh2 (gonadotropin-releasing hormone 2) and gnrh3, as well as gthα (gonadotropic hormone α), fshβ (follicle-stimulating hormone β), lhβ (luteinizing hormone β), lhr (LH receptor) and fshr (FSH receptor) mRNA levels in the pituitary. The mRNA levels of adipor1, but not adipor2, in the gonads were also inhibited after injection. Moreover, the levels of serum E2 (estrogen) in female and T (testosterone) in male were significantly decreased after injection of gCtrp9. Overall, our data provides novel data indicating, for the first time, a regulatory effect of CTRP9 on teleost reproduction.


Molecular identification of FNDC5 and effect of irisin on the glucose metabolism in common carp (Cyprinus carpio L.).

  • Liping Yang‎ et al.
  • General and comparative endocrinology‎
  • 2021‎

Irisin, encoded by fibronectin type III domain-containing protein 5 (FNDC5) gene, plays a role in energy expenditure and insulin sensitivity in mice. In fish, the function of irisin related to glucose metabolism is less reported. It may increase glucose utilization in fish. The aim of the present study was to characterize the regulatory role of irisin in glucose metabolism in common carp (Cyprinus carpio L.). In this study, FNDC5a and FNDC5b were isolated from common carp. The cDNA of FNDC5a and FNDC5b were 722 bp and 714 bp, encoding 221 and 207 amino acids, respectively. FNDC5a was abundantly expressed in the brain and gonad. FNDC5b was mainly expressed in brain. Different expression pattern of FNDC5a and FNDC5b under fasting/refeeding and OGTT experiment were identified. The recombinant common carp irisinA and irisinB were prepared by prokaryotic expression system. Glucose concentration was decreased in treatment with irisinA or irisinB in the in vitro and in vivo experiments. The mRNA expression levels of gluconeogenesis-related genes were significantly down-regulated, while the mRNA expression of glycolysis-related genes were significantly up-regulated after treatment with recombinant irisinA or irisinB in liver in vivo and in primary hepatocytes in vitro. Our research shows that irisin inhibits hepatic gluconeogenesis and promotes hepatic glycolysis. Taken together, this study for the first time revealed the two subtypes of FNDC5 and explored the function and mechanisms of irisinA and irisinB in fish glucose homeostasis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: