Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

F-/Cl- selectivity in CLCF-type F-/H+ antiporters.

  • Ashley E Brammer‎ et al.
  • The Journal of general physiology‎
  • 2014‎

Many bacterial species protect themselves against environmental F(-) toxicity by exporting this anion from the cytoplasm via CLC(F) F(-)/H(+) antiporters, a subclass of CLC superfamily anion transporters. Strong F(-) over Cl(-) selectivity is biologically essential for these membrane proteins because Cl(-) is orders of magnitude more abundant in the biosphere than F(-). Sequence comparisons reveal differences between CLC(F)s and canonical Cl(-)-transporting CLCs within regions that, in the canonical CLCs, coordinate Cl(-) ion and govern anion transport. A phylogenetic split within the CLC(F) clade, manifested in sequence divergence in the vicinity of this ion-binding center, raises the possibility that these two CLC(F) subclades might exhibit differences in anion selectivity. Several CLC(F) homologues from each subclade were examined for F(-)/Cl(-) selectivity of anion transport and equilibrium binding. Differences in both of these anion-selectivity metrics correlate with sequence divergence among CLC(F)s. Chimeric constructs identify two residues in this region that largely account for the subclade differences in selectivity. In addition, these experiments serendipitously uncovered an unusually steep, Cl(-)-specific voltage dependence of transport that greatly enhances F(-) selectivity at low voltage.


Fluoride-dependent interruption of the transport cycle of a CLC Cl-/H+ antiporter.

  • Hyun-Ho Lim‎ et al.
  • Nature chemical biology‎
  • 2013‎

Cl(-)/H(+) antiporters of the CLC superfamily transport anions across biological membranes in varied physiological contexts. These proteins are weakly selective among anions commonly studied, including Cl(-), Br(-), I(-), NO3(-) and SCN(-), but they seem to be very selective against F(-). The recent discovery of a new CLC clade of F(-)/H(+) antiporters, which are highly selective for F(-) over Cl(-), led us to investigate the mechanism of Cl(-)-over-F(-) selectivity by a CLC Cl(-)/H(+) antiporter, CLC-ec1. By subjecting purified CLC-ec1 to anion transport measurements, electrophysiological recording, equilibrium ligand-binding studies and X-ray crystallography, we show that F(-) binds in the Cl(-) transport pathway with affinity similar to Cl(-) but stalls the transport cycle. Examination of various mutant antiporters implies a 'lock-down' mechanism of F(-) inhibition, in which F(-), by virtue of its unique hydrogen-bonding chemistry, greatly retards a proton-linked conformational change essential for the transport cycle of CLC-ec1.


Functional Monomerization of a ClC-Type Fluoride Transporter.

  • Nicholas B Last‎ et al.
  • Journal of molecular biology‎
  • 2015‎

Anion channels and antiporters of the ClC superfamily have been found to be exclusively dimeric in nature, even though each individual monomer contains the complete transport pathway. Here, we describe the destabilization through mutagenesis of the dimer interface of a bacterial F(-)/H(+) antiporter, ClC(F)-eca. Several mutations that produce monomer/dimer equilibrium of the normally dimeric transporter were found, simply by shortening a hydrophobic side chain in some cases. One mutation, L376W, leads to a wholly monomeric variant that shows full activity. Furthermore, we discovered a naturally destabilized homologue, ClC(F)-rla, which undergoes partial monomerization in detergent without additional mutations. These results, in combination with the previous functional monomerization of the distant relative ClC-ec1, demonstrate that the monomer alone is the functional unit for several clades of the ClC superfamily.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: