Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

CD40-deficient, influenza-specific CD8 memory T cells develop and function normally in a CD40-sufficient environment.

  • Byung O Lee‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Two models have been proposed to explain the requirement for CD40 signaling in CD8 T cell responses. The first model suggests that CD4 T cells activate antigen-presenting cells (APCs) through CD40 signaling (APC licensing). In turn, licensed APCs are able to prime naive CD8 T cells. The second model suggests that CD154-expressing CD4 T cells activate CD40-bearing CD8 T cells directly. Although the requirement for CD40 in APC licensing can be bypassed by inflammatory responses to pathogens that activate APCs directly, the second model predicts that CD8 responses to all antigens will be dependent on CD40 signaling. Here we determined which model applies to CD8 responses to influenza. We demonstrate that optimal CD8 T cell responses to influenza are dependent on CD40 signaling, however both primary and secondary responses to influenza require CD40 expression on non-T cells. Furthermore, CD40-/- CD8 T cells proliferate and differentiate to the same extent as CD40+/+ CD8 T cells in response to influenza, as long as they have equal access to CD40+/+ APCs. Thus, CD4 T cells do not activate influenza-specific CD8 cells directly through CD40 signaling. Instead, these data support the classical model, in which CD4 T cells provide help to CD8 T cells indirectly by activating APCs through CD40.


Dendritic cells infiltrating tumors cotransduced with granulocyte/macrophage colony-stimulating factor (GM-CSF) and CD40 ligand genes take up and present endogenous tumor-associated antigens, and prime naive mice for a cytotoxic T lymphocyte response.

  • C Chiodoni‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

We transduced BALB/c-derived C-26 colon carcinoma cells with granulocyte/macrophage colony-stimulating factor (GM-CSF) and CD40 ligand (CD40L) genes to favor interaction of these cells with host dendritic cells (DCs) and, therefore, cross-priming. Cotransduced cells showed reduced tumorigenicity, and tumor take was followed by regression in some mice. In vivo tumors were heavily infiltrated with DCs that were isolated, phenotyped, and tested in vitro for stimulation of tumor-specific cytotoxic T lymphocytes (CTLs). BALB/c C-26 carcinoma cells express the endogenous murine leukemia virus (MuLV) env gene as a tumor-associated antigen. This antigen is shared among solid tumors of BALB/c and C57BL/6 mice and contains two epitopes, AH-1 and KSP, recognized in the context of major histocompatibility complex class I molecules H-2Ld and H-2K(b), respectively. DCs isolated from C-26/GM/CD40L tumors grown in (BALB/c x C57BL/6)F1 mice (H-2d x b) stimulated interferon gamma production by both anti-AH-1 and KSP CTLs, whereas tumor-infiltrating DCs (TIDCs) of BALB/c mice stimulated only anti-AH-1 CTLs. Furthermore, TIDCs primed naive mice for CTL activity as early as 2 d after injection into the footpad, whereas double-transduced tumor cells required at least 5 d for priming; this difference may reflect direct DC priming versus indirect tumor cell priming. Immunohistochemical staining indicated colocalization of DCs and apoptotic bodies in the tumors. These data indicate that DCs infiltrating tumors that produce GM-CSF and CD40L can capture cellular antigens, likely through uptake of apoptotic bodies, and mature in situ to a stage suitable for antigen presentation. Thus, tumor cell-based vaccines engineered to favor the interaction with host DCs can be considered.


CD8(+) T cells mediate CD40-independent maturation of dendritic cells in vivo.

  • C Ruedl‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

Induction of cytotoxic T lymphocyte (CTL) responses against minor histocompatibility antigens is dependent upon the presence of T cell help and requires the interaction of CD40 on dendritic cells (DCs) with CD40 ligand on activated T helper cells (Th). This study demonstrates that CD40 is neither involved in Th-dependent nor Th-independent antiviral CTL responses. Moreover, the data show that DC maturation occurs in vivo after viral infection in the absence of CD40 and Th. This maturation did not require viral infection of DCs but was mediated by peptide-specific CD8(+) T cells. Surprisingly, naive CD8(+) T cells were able to trigger DC maturation within 24 h after activation in vivo and in vitro. Moreover, peptide-activated CD8(+) T cells were able to induce maturation in trans, as DCs that failed to present the relevant antigen in vivo also underwent maturation. Upon isolation, the in vivo-stimulated DCs were able to convert a classically Th-dependent CTL response (anti-HY) into a Th-independent response in vitro. Thus, antiviral CD8(+) T cells are sufficient for the maturation of DCs in the absence of CD40.


Targeting antigens to CD180 rapidly induces antigen-specific IgG, affinity maturation, and immunological memory.

  • Jay W Chaplin‎ et al.
  • The Journal of experimental medicine‎
  • 2013‎

Antigen (Ag) targeting is an efficient way to induce immune responses. Ag is usually coupled to an antibody (Ab) specific for a receptor expressed on dendritic cells (DCs), and then the Ag-anti-receptor is inoculated with an adjuvant. Here we report that targeting Ag to a receptor expressed on both B cells and DCs, the TLR orphan receptor CD180, in the absence of adjuvant rapidly induced IgG responses that were stronger than those induced by Ag in alum. Ag conjugated to anti-CD180 (Ag-αCD180) induced affinity maturation and Ab responses that were partially T cell independent, as Ag-specific IgGs were generated in CD40- and T cell-deficient mice. After preimmunization with Ag-αCD180 and boosting with soluble Ag, both WT and CD40 knockout (KO) mice rapidly produced Ag-specific IgG-forming cells, demonstrating that Ag-anti-CD180 induces immunological memory. The potent adjuvant effect of Ag-αCD180 required Ag to be coupled to anti-CD180 and the responsive B cells to express both CD180 and an Ag-specific B cell receptor. Surprisingly, CD180 Ag targeting also induced IgG Abs in BAFF-R KO mice lacking mature B cells and in mice deficient in interferon signaling. Targeting Ag to CD180 may be useful for therapeutic vaccination and for vaccinating the immune compromised.


Antigens varying in affinity for the B cell receptor induce differential B lymphocyte responses.

  • V Kouskoff‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

The B cell receptor (BCR) triggers a variety of biological responses that differ depending upon the properties of the antigen. A panel of M13 phage-displayed peptide ligands with varying affinity for the 3-83 antibody was generated to explore the role of antigen-BCR affinity in cell activation studies using primary 3-83 transgenic mouse B cells. Multiple parameters of activation were measured. T cell-independent B cell proliferation, antibody secretion, induction of germline immunoglobulin gamma1 transcripts, and B cell production of interleukin (IL) 2 and interferon gamma responses were better correlated with antigen-BCR affinity than with receptor occupancy. In contrast, other responses, such as upregulation of major histocompatibility complex class II and B7.2 (CD86), secretion of IL-6, and B cell proliferation in the context of CD40 signaling were only weakly dependent on antigen affinity. Biochemical analysis revealed that at saturating ligand concentrations the ability of phage to stimulate some early signaling responses, such as Ca++ mobilization and tyrosine phosphorylation of syk or Igalpha, was highly affinity dependent, whereas the ability to stimulate Lyn phosphorylation was less so. These data suggest that the BCR is capable of differential signaling. The possibility that differential BCR signaling by antigen determines whether an antibody response will be T independent or dependent is discussed.


Uncoupling of proliferative potential and gain of effector function by CD8(+) T cells responding to self-antigens.

  • Javier Hernández‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

Professional antigen-presenting cells (APCs) are capable of transporting self-antigens from peripheral tissues to secondary lymphoid organs where they are presented to potentially autoreactive CD8(+) T cells. In the absence of an inflammatory response, this results in immune tolerance. The presence of activated, antigen-specific CD4(+) T cells converts this tolerogenic encounter into an immunogenic one by promoting extensive proliferation of CD8(+) T cells and their development into effectors. Surprisingly, activation of APCs with an agonistic antibody specific for CD40 could not substitute for CD4(+) help in this task. Anti-CD40 induced recruitment of dendritic cells expressing high levels of B7 costimulatory molecules into the lymph nodes, which in turn, greatly enhanced activation and expansion of CD8(+) T cells. However, these activated CD8(+) cells did not demonstrate effector function. We conclude that proliferative potential and gain of effector function are separable events in the differentiation program of CD8(+) T cells.


In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination.

  • Laura C Bonifaz‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

The prevention and treatment of prevalent infectious diseases and tumors should benefit from improvements in the induction of antigen-specific T cell immunity. To assess the potential of antigen targeting to dendritic cells to improve immunity, we incorporated ovalbumin protein into a monoclonal antibody to the DEC-205 receptor, an endocytic receptor that is abundant on these cells in lymphoid tissues. Simultaneously, we injected agonistic alpha-CD40 antibody to mature the dendritic cells. We found that a single low dose of antibody-conjugated ovalbumin initiated immunity from the naive CD4+ and CD8+ T cell repertoire. Unexpectedly, the alphaDEC-205 antigen conjugates, given s.c., targeted to dendritic cells systemically and for long periods, and ovalbumin peptide was presented on MHC class I for 2 weeks. This was associated with stronger CD8+ T cell-mediated immunity relative to other forms of antigen delivery, even when the latter was given at a thousand times higher doses. In parallel, the mice showed enhanced resistance to an established rapidly growing tumor and to viral infection at a mucosal site. By better harnessing the immunizing functions of maturing dendritic cells, antibody-mediated antigen targeting via the DEC-205 receptor increases the efficiency of vaccination for T cell immunity, including systemic and mucosal resistance in disease models.


Presentation of exogenous antigens on major histocompatibility complex (MHC) class I and MHC class II molecules is differentially regulated during dendritic cell maturation.

  • Lelia Delamarre‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

During maturation, dendritic cells (DCs) regulate their capacity to process and present major histocompatibility complex (MHC) II-restricted antigens. Here we show that presentation of exogenous antigens by MHC I is also subject to developmental control, but in a fashion strikingly distinct from MHC II. Immature mouse bone marrow-derived DCs internalize soluble ovalbumin and sequester the antigen intracellularly until they receive an appropriate signal that induces cross presentation. At that time, peptides are generated in a proteasome-dependent fashion and used to form peptide-MHC I complexes that appear at the plasma membrane. Unlike MHC II, these events do not involve a marked redistribution of preexisting MHC I molecules from intracellular compartments to the DC surface. Moreover, out of nine stimuli well known to induce the phenotypic maturation of DCs and to promote MHC II presentation, only two (CD40 ligation, disruption of cell-cell contacts) activated cross presentation on MHC I. In contrast, formation of peptide-MHC I complexes from endogenous cytosolic antigens occurs even in unstimulated, immature DCs. Thus, the MHC I and MHC II pathways of antigen presentation are differentially regulated during DC maturation.


Dendritic cells pulsed with intact Streptococcus pneumoniae elicit both protein- and polysaccharide-specific immunoglobulin isotype responses in vivo through distinct mechanisms.

  • Jesus Colino‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

Immature bone marrow-derived myeloid dendritic cells (BMDCs) are induced to undergo phenotypic maturation and secretion of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, IL-12, and IL-10 when pulsed in vitro with intact Streptococcus pneumoniae. After transfer to naive mice, pulsed BMDCs induce immunoglobulin (Ig) isotype responses specific for both protein and polysaccharide pneumococcal antigens, having in common the requirement for viable BMDCs, T cells, and B7-dependent costimulation in the recipient mice. Whereas primary Ig isotype responses to bacterial proteins uniformly require BMDC expression of major histocompatibility complex class II, CD40, and B7, and the secretion of IL-6, but not IL-12, similar requirements for antipolysaccharide Ig responses were only observed for the IgG1 isotype.


Ceramide inhibits antigen uptake and presentation by dendritic cells.

  • F Sallusto‎ et al.
  • The Journal of experimental medicine‎
  • 1996‎

Ceramides are intramembrane diffusible mediators involved in transducing signals originated from a variety of cell surface receptors. Different adaptive and differentiative cellular responses, including apoptotic cell death, use ceramide-mediated pathways as an essential part of the program. Here, we show that human dendritic cells respond to CD40 ligand, as well as to tumor necrosis factor-alpha and IL-1 beta, with intracellular ceramide accumulation, as they are induced to differentiate. Dendritic cells down-modulate their capacity to take up soluble antigens in response to exogenously added or endogenously produced ceramides. This is followed by an impairment in presenting soluble antigens to specific T cell clones, while cell viability and the capacity to stimulate allogeneic responses or to present immunogenic peptides is fully preserved. Thus, ceramide-mediated pathways initiated by different cytokines can actively modulate professional antigen-presenting cell function and antigen-specific immune responses.


Limitation of immune tolerance-inducing thymic epithelial cell development by Spi-B-mediated negative feedback regulation.

  • Nobuko Akiyama‎ et al.
  • The Journal of experimental medicine‎
  • 2014‎

Medullary thymic epithelial cells (mTECs) expressing the autoimmune regulator AIRE and various tissue-specific antigens (TSAs) are critical for preventing the onset of autoimmunity and may attenuate tumor immunity. However, molecular mechanisms controlling mTEC development remain elusive. Here, we describe the roles of the transcription factor Spi-B in mTEC development. Spi-B is rapidly up-regulated by receptor activator of NF-κB ligand (RANKL) cytokine signaling, which triggers mTEC differentiation, and in turn up-regulates CD80, CD86, some TSAs, and the natural inhibitor of RANKL signaling, osteoprotegerin (OPG). Spi-B-mediated OPG expression limits mTEC development in neonates but not in embryos, suggesting developmental stage-specific negative feedback regulation. OPG-mediated negative regulation attenuates cellularity of thymic regulatory T cells and tumor development in vivo. Hence, these data suggest that this negative RANKL-Spi-B-OPG feedback mechanism finely tunes mTEC development and function and may optimize the trade-off between prevention of autoimmunity and induction of antitumor immunity.


Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand.

  • K Murata‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

OX40 expressed on activated T cells is known to be an important costimulatory molecule on T cell activation in vitro. However, the in vivo functional significance of the interaction between OX40 and its ligand, OX40L, is still unclear. To investigate the role of OX40L during in vivo immune responses, we generated OX40L-deficient mice and a blocking anti-OX40L monoclonal antibody, MGP34. OX40L expression was demonstrated on splenic B cells after CD40 and anti-immunoglobulin (Ig)M stimulation, while only CD40 ligation was capable of inducing OX40L on dendritic cells. OX40L-deficient and MGP34-treated mice engendered apparent suppression of the recall reaction of T cells primed with both protein antigens and alloantigens and a significant reduction in keyhole limpet hemocyanin-specific IgG production. The impaired T cell priming was also accompanied by a concomitant reduction of both T helper type 1 (Th1) and Th2 cytokines. Furthermore, antigen-presenting cells (APCs) derived from the mutant mice revealed an impaired intrinsic APC function, demonstrating the importance of OX40L in both the priming and effector phases of T cell activation. Collectively, these results provide convincing evidence that OX40L, expressed on APCs, plays a critical role in antigen-specific T cell responses in vivo.


Tumor growth enhances cross-presentation leading to limited T cell activation without tolerance.

  • Linh T Nguyen‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

Using a tumor model of spontaneously arising insulinomas expressing a defined tumor-associated antigen, we investigated whether tumor growth promotes cross-presentation and tolerance of tumor-specific T cells. We found that an advanced tumor burden enhanced cross-presentation of tumor-associated antigens to high avidity tumor-specific T cells, inducing T cell proliferation and limited effector function in vivo. However, contrary to other models, tumor-specific T cells were not tolerized despite a high tumor burden. In fact, in tumor-bearing mice, persistence and responsiveness of adoptively transferred tumor-specific T cells were enhanced. Accordingly, a potent T cell-mediated antitumor response could be elicited by intravenous administration of tumor-derived peptide and agonistic anti-CD40 antibody or viral immunization and reimmunization. Thus, in this model, tumor growth promotes activation of high avidity tumor-specific T cells instead of tolerance. Therefore, the host remains responsive to T cell immunotherapy.


Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells.

  • B Sauter‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

Cell death by necrosis is typically associated with inflammation, in contrast to apoptosis. We have identified additional distinctions between the two types of death that occur at the level of dendritic cells (DCs) and which influence the induction of immunity. DCs must undergo changes termed maturation to act as potent antigen-presenting cells. Here, we investigated whether exposure to apoptotic or necrotic cells affected DC maturation. We found that immature DCs efficiently phagocytose a variety of apoptotic and necrotic tumor cells. However, only exposure to the latter induces maturation. The mature DCs express high levels of the DC-restricted markers CD83 and lysosome-associated membrane glycoprotein (DC-LAMP) and the costimulatory molecules CD40 and CD86. Furthermore, they develop into powerful stimulators of both CD4(+) and CD8(+) T cells. Cross-presentation of antigens to CD8(+) T cells occurs after uptake of apoptotic cells. We demonstrate here that optimal cross-presentation of antigens from tumor cells requires two steps: phagocytosis of apoptotic cells by immature DCs, which provides antigenic peptides for major histocompatibility complex class I and class II presentation, and a maturation signal that is delivered by exposure to necrotic tumor cells, their supernatants, or standard maturation stimuli, e.g., monocyte-conditioned medium. Thus, DCs are able to distinguish two types of tumor cell death, with necrosis providing a control that is critical for the initiation of immunity.


Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells.

  • J R Abrams‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

Efficient T cell activation is dependent on the intimate contact between antigen-presenting cells (APCs) and T cells. The engagement of the B7 family of molecules on APCs with CD28 and CD152 (cytotoxic T lymphocyte-associated antigen 4 [CTLA-4]) receptors on T cells delivers costimulatory signal(s) important in T cell activation. We investigated the dependence of pathologic cellular activation in psoriatic plaques on B7-mediated T cell costimulation. Patients with psoriasis vulgaris received four intravenous infusions of the soluble chimeric protein CTLA4Ig (BMS-188667) in a 26-wk, phase I, open label dose escalation study. Clinical improvement was associated with reduced cellular activation of lesional T cells, keratinocytes, dendritic cells (DCs), and vascular endothelium. Expression of CD40, CD54, and major histocompatibility complex (MHC) class II HLA-DR antigens by lesional keratinocytes was markedly reduced in serial biopsy specimens. Concurrent reductions in B7-1 (CD80), B7-2 (CD86), CD40, MHC class II, CD83, DC-lysosomal-associated membrane glycoprotein (DC-LAMP), and CD11c expression were detected on lesional DCs, which also decreased in number within lesional biopsies. Skin explant experiments suggested that these alterations in activated or mature DCs were not the result of direct toxicity of CTLA4Ig for DCs. Decreased lesional vascular ectasia and tortuosity were also observed and were accompanied by reduced presence of E-selectin, P-selectin, and CD54 on vascular endothelium. This study highlights the critical and proximal role of T cell activation through the B7-CD28/CD152 costimulatory pathway in maintaining the pathology of psoriasis, including the newly recognized accumulation of mature DCs in the epidermis.


Molecular characterization of virus-induced autoantibody responses.

  • Burkhard Ludewig‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

Here we present a comprehensive molecular mapping of virus-induced autoimmune B cell responses obtained by serological identification of antigens by recombinant expression cloning analysis. Immunoscreening of cDNA expression libraries of various organs (lung, liver, and spleen) using sera from mice infected with cytopathic (vaccinia virus [VV]) or noncytopathic (lymphocytic choriomeningitis virus [LCMV]) viruses revealed a broad specificity of the elicited autoantibody response. Interestingly, the majority of the identified autoantigens have been previously described as autoantigens in humans. We found that induction of virus-induced autoantibodies of the immunoglobulin G class largely depends on the CD40-CD40L-mediated interaction between T and B cells. Furthermore, antibody titers against a number of autoantigens were comparable to the concomitantly induced antiviral antibody response. Comparison of serum reactivity against a selected panel of autoantigens after infection with VV, LCMV, or vesicular stomatitis virus showed that the different virus infections triggered distinct autoantibody responses, suggesting that virus infections may leave specific "autoantibody fingerprints" in the infected host.


Dendritic cell maturation overrules H-2D-mediated natural killer T (NKT) cell inhibition: critical role for B7 in CD1d-dependent NKT cell interferon gamma production.

  • Y Ikarashi‎ et al.
  • The Journal of experimental medicine‎
  • 2001‎

Given the broad expression of H-2 class Ib molecules on hematopoietic cells, antigen presentation pathways among CD1d expressing cells might tightly regulate CD1d-restricted natural killer T (NKT) cells. Bone marrow-derived dendritic cells (BM-DCs) and not adherent splenocytes become capable of triggering NK1.1(+)/T cell receptor (TCR)(int) hepatic NKT cell activation when (a) immature BM-DCs lack H-2D(b)-/- molecules or (b) BM-DCs undergo a stress signal of activation. In such conditions, BM-DCs promote T helper type 1 predominant CD1d-restricted NKT cell stimulation. H-2 class Ia-mediated inhibition involves more the direct H-2D(b) presentation than the indirect Qa-1(b) pathway. Such inhibition can be overruled by B7/CD28 interactions and marginally by CD40/CD40L or interleukin 12. These data point to a unique regulatory role of DCs in NKT cell innate immune responses and suggest that H-2 class Ia and Ib pathways differentially control NKT cell recognition of DC antigens.


Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung.

  • Emily E Thornton‎ et al.
  • The Journal of experimental medicine‎
  • 2012‎

Asthma pathogenesis is focused around conducting airways. The reasons for this focus have been unclear because it has not been possible to track the sites and timing of antigen uptake or subsequent antigen presentation to effector T cells. In this study, we use two-photon microscopy of the lung parenchyma and note accumulation of CD11b(+) dendritic cells (DCs) around the airway after allergen challenge but very limited access of these airway-adjacent DCs to the contents of the airspace. In contrast, we observed prevalent transepithelial uptake of particulate antigens by alveolar DCs. These distinct sites are temporally linked, as early antigen uptake in alveoli gives rise to DC and antigen retention in the airway-adjacent region. Antigen-specific T cells also accumulate in the airway-adjacent region after allergen challenge and are activated by the accumulated DCs. Thus, we propose that later airway hyperreactivity results from selective retention of allergen-presenting DCs and antigen-specific T cells in airway-adjacent interaction zones, not from variation in the abilities of individual DCs to survey the lung.


Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity.

  • E von Stebut‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

Epidermal Langerhans cells (LC) are immature dendritic cells (DC) located in close proximity to the site of inoculation of infectious Leishmania major metacyclic promastigotes by sand flies. Using LC-like DC expanded from C57BL/6 fetal skin, we characterized interactions involving several developmental stages of Leishmania and DC. We confirmed that L. major amastigotes, but not promastigotes, efficiently entered LC-like DC. Parasite internalization was associated with activation manifested by upregulation of major histocompatibility complex (MHC) class I and II surface antigens, increased expression of costimulatory molecules (CD40, CD54, CD80, and CD86), and interleukin (IL)-12 p40 release within 18 h. L. major-induced IL-12 p70 release by DC required interferon gamma and prolonged (72 h) incubation. In contrast, infection of inflammatory macrophages (Mphi) with amastigotes or promastigotes did not lead to significant changes in surface antigen expression or cytokine production. These results suggest that skin Mphi and DC are infected sequentially in cutaneous leishmaniasis and that they play distinct roles in the inflammatory and immune response initiated by L. major. Mphi capture organisms near the site of inoculation early in the course of infection after establishment of cellular immunity, and kill amastigotes but probably do not actively participate in T cell priming. In contrast, skin DC are induced to express increased amounts of MHC antigens and costimulatory molecules and to release cytokines (including IL-12 p70) by exposure to L. major amastigotes that ultimately accumulate in lesional tissue, and thus very likely initiate protective T helper cell type 1 immunity.


Enhanced B cell expansion, survival, and humoral responses by targeting death receptor 6.

  • Clint S Schmidt‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Targeted disruption of death receptor (DR)6 results in enhanced CD4(+) T cell expansion and T helper cell type 2 differentiation after stimulation. Similar to T cells, DR6 is expressed on resting B cells but is down-regulated upon activation. We examined DR6(-/-) B cell responses both in vitro and in vivo. In vitro, DR6(-/-) B cells undergo increased proliferation in response to anti-immunoglobulin M, anti-CD40, and lipopolysaccharide. This hyperproliferative response was due, at least in part, to both increased cell division and reduced cell apoptosis when compared with wild-type B cells. Consistent with these observations, increased nuclear levels and activity of nuclear factor kappaB transcription factor, c-Rel, and elevated Bcl-x(l) expression were observed in DR6(-/-) B cells upon stimulation. In addition, DR6(-/-) B cells exhibited higher surface levels of CD86 upon activation and were more effective as antigen-presenting cells in an allogeneic T cell proliferation response. DR6(-/-) mice exhibited enhanced germinal center formation and increased titers of immunoglobulins to T-dependent as well as T-independent type I and II antigens. This is the first demonstration of a regulatory role of DR6 in the activation and function of B cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: