Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Genetic defects of the IRF1-mediated major histocompatibility complex class I antigen presentation pathway occur prevalently in the JAK2 gene in non-small cell lung cancer.

  • Tao Shen‎ et al.
  • Oncotarget‎
  • 2017‎

Recognition of major histocompatibility complex (MHC) class I antigens on tumor cells by cytotoxic T cells is involved in T cell-mediated tumor immune surveillance and immune checkpoint therapy. The interferon-γ (IFNγ)-IRF1 signaling pathway regulates MHC class I antigen presentation. To examine genetic defects of the IFNγ-IRF1 pathway in non-small cell lung cancer (NSCLC), we analyzed The Cancer Genome Atlas (TCGA) lung adenocarcinoma (LuAd) and lung squamous cell carcinoma (LuSc) data. Loss-of-function (LOF) genetic alterations of the IFNγ-IRF1 pathway genes (IFNGR1, IFNGR2, JAK1, JAK2, STAT1, IRF1) were found in 64 (6.3%) of 1,016 patients. These genetic defects occur prevalently in JAK2 (33 cases) and often through deletions (29 cases) of chromosome 9p24.1. JAK2 deletions were frequently, but not always, associated with deletions of PD-L1 gene (CD274), PD-L2 gene (PDCD1LG2), PTPRD, and CDKN2A/CDKN2B at the chromosome 9p24.1-9p21.3 region. IRF1 expression was correlated with immune cytolytic activity markers GZMA and PRF1 in NSCLC. IFNγ induced IRF1 expression and cell surface HLA-A/HLA-B/HLA-C (HLA-ABC) in A549, H661, H292, and H2172 cells that contained the wildtype JAK2, but not in H1573 and H1623 cells that were JAK2 defective. Deletion of JAK2 or inhibition of the JAK2 kinase activity resulted in loss of IFNγ-induced IRF1 and cell surface HLA-ABC in JAK2 wildtype NSCLC cells, whereas expression of exogenous JAK2 in H1573 cells restored the IFNγ responses. These findings show that JAK2 deficiency is the major mechanism of genetic defects of the IFNγ-IRF1 pathway in NSCLC and reveal a previously unrecognized significance of chromosome 9p deletion in NSCLC.


PD1 is expressed on exhausted T cells as well as virus specific memory CD8+ T cells in the bone marrow of myeloma patients.

  • Anne-Marit Sponaas‎ et al.
  • Oncotarget‎
  • 2018‎

Characterization of CD8+ T cells in the tumor microenvironment (TME) is important to predict responses to checkpoint therapy. The TME in multiple myeloma is the bone marrow, which also is an immune organ where immune responses are generated and memory cells stored. The presence of T cells with other specificities than the tumor in the bone marrow may affect the search for biomarkers to predict responses to immunotherapy in myeloma. Here, we found similar proportions of PD1+ CD8+ T cells and similar levels of PD1 expression on CD8+ T cells in the bone marrow of myeloma patients and healthy controls. PD1 expression on CD8+ T cells did not correlate with tumor load suggesting that at least some of the PD1+ CD8+ T cells were specific for non-myeloma antigens. Indeed, PD1+ EBV-specific CD8+ T cells were detected it the bone marrow of patients. Terminal effectors (Teff), effector memory (Tem) and central memory (Tcm) cells as well as exhausted T cells were all found in the myeloma bone marrow. However, myeloma patients had more terminal effectors and fewer memory cells than healthy controls suggesting that the tumor generate an immune response against myeloma cells in the bone marrow. The presence of CD8 EOMEShigh Tbetlow T cells with intermediate levels of PD1 in myeloma patients suggests that T cell types, that are known to be responsive to checkpoint therapy, are found at the tumor site.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: