Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

TCF4-Targeting miR-124 is Differentially Expressed amongst Dendritic Cell Subsets.

  • Sun Murray Han‎ et al.
  • Immune network‎
  • 2016‎

Dendritic cells (DCs) are professional antigen-presenting cells that sample their environment and present antigens to naïve T lymphocytes for the subsequent antigen-specific immune responses. DCs exist in a range of distinct subpopulations including plasmacytoid DCs (pDCs) and classical DCs (cDCs), with the latter consisting of the cDC1 and cDC2 lineages. Although the roles of DC-specific transcription factors across the DC subsets have become understood, the posttranscriptional mechanisms that regulate DC development are yet to be elucidated. MicroRNAs (miRNAs) are pivotal posttranscriptional regulators of gene expression in a myriad of biological processes, but their contribution to the immune system is just beginning to surface. In this study, our in-house probe collection was screened to identify miRNAs possibly involved in DC development and function by targeting the transcripts of relevant mouse transcription factors. Examination of DC subsets from the culture of mouse bone marrow with Flt3 ligand identified high expression of miR-124 which was able to target the transcript of TCF4, a transcription factor critical for the development and homeostasis of pDCs. Further expression profiling of mouse DC subsets isolated from in vitro culture as well as via ex vivo purification demonstrated that miR-124 was outstandingly expressed in CD24(+) cDC1 cells compared to in pDCs and CD172α(+) cDC2 cells. These results imply that miR-124 is likely involved in the processes of DC subset development by posttranscriptional regulation of a transcription factor(s).


Competent antigen-presenting cells are generated from the long-term culture of splenocytes with granulocyte-macrophage colony-stimulating factor.

  • Seul Hye Ryu‎ et al.
  • Immunology letters‎
  • 2017‎

Dendritic cells (DCs) are routinely produced from the culture of mouse bone marrow (BM) with granulocyte-macrophage colony-stimulating factor (GM-CSF) within a period of 10days. Although splenic extramedullary myelopoiesis was suggested to occur under the influence of GM-CSF, the hematopoietic outcome of splenic culture with GM-CSF has not been scrutinized. We have cultured mouse splenocytes with GM-CSF for an extended period of time, where we discovered that the CD11b⁺CD11c⁺ cells began to proliferate prominently after 10days and their number increased until the 4th week of the culture. In parallel experiments, FMS-like tyrosine kinase 3 (FLT3) and its ligand, FLT3L, were not found to influence the culture of splenocytes. Like DCs in the culture of BM with GM-CSF, a distinct population of CD11b⁺CD11c⁺MHC IIhi cells was readily identified as DCs in the long-term culture of splenocytes. After being isolated and plated overnight the CD11b⁺CD11c⁺MHC IIhi cells exhibited non-adherent dendritic morphology, while the other CD11b⁺CD11c⁺ cells became adherent. Besides, these CD11b⁺CD11c⁺MHC IIhi cells possessed relatively weak endocytic and phagocytic abilities but displayed strong antigen-presenting capacities, revealing DC-like characteristics; in contrast, the other CD11b⁺CD11c⁺ cells showed strong endocytosis and phagocytosis of antigens but were poor at antigen presentation, indicating macrophage-like traits. Therefore, we demonstrated that phenotypically as well as functionally genuine DCs are generated in the long-term culture of splenocytes with GM-CSF.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: