2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 66 papers

Acylhydrazones as Antifungal Agents Targeting the Synthesis of Fungal Sphingolipids.

  • Cristina Lazzarini‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2018‎

The incidence of invasive fungal infections has risen dramatically in recent decades. Current antifungal drugs are either toxic, likely to interact with other drugs, have a narrow spectrum of activity, or induce fungal resistance. Hence, there is a great need for new antifungals, possibly with novel mechanisms of action. Previously our group reported an acylhydrazone called BHBM that targeted the sphingolipid pathway and showed strong antifungal activity against several fungi. In this study, we screened 19 derivatives of BHBM. Three out of 19 derivatives were highly active against Cryptococcus neoformansin vitro and had low toxicity in mammalian cells. In particular, one of them, called D13, had a high selectivity index and showed better activity in an animal model of cryptococcosis, candidiasis, and pulmonary aspergillosis. D13 also displayed suitable pharmacokinetic properties and was able to pass through the blood-brain barrier. These results suggest that acylhydrazones are promising molecules for the research and development of new antifungal agents.


Novel Zinc-Attenuating Compounds as Potent Broad-Spectrum Antifungal Agents with In Vitro and In Vivo Efficacy.

  • Karen A O'Hanlon Cohrt‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2018‎

An increase in the incidence of rare but hard-to-treat invasive fungal pathogens as well as resistance to the currently available antifungal drugs calls for new broad-spectrum antifungals with a novel mechanism of action. Here we report the identification and characterization of two novel zinc-attenuating compounds, ZAC307 and ZAC989, which exhibit broad-spectrum in vitro antifungal activity and in vivo efficacy in a fungal kidney burden candidiasis model. The compounds were identified serendipitously as part of a drug discovery process aimed at finding novel inhibitors of the fungal plasma membrane proton ATPase Pma1. Based on their structure, we hypothesized that they might act as zinc chelators. Indeed, both fluorescence-based affinity determination and potentiometric assays revealed these compounds, subsequently termed zinc-attenuating compounds (ZACs), to have strong affinity for zinc, and their growth inhibitory effects on Candida albicans and Aspergillus fumigatus could be inactivated by the addition of exogenous zinc to fungal growth media. We determined the ZACs to be fungistatic, with a low propensity for resistance development. Gene expression analysis suggested that the ZACs interfere negatively with the expression of genes encoding the major components of the A. fumigatus zinc uptake system, thus supporting perturbance of zinc homeostasis as the likely mode of action. With demonstrated in vitro and in vivo antifungal activity, low propensity for resistance development, and a novel mode of action, the ZACs represent a promising new class of antifungal compounds, and their advancement in a drug development program is therefore warranted.


In Vitro Activity of Chlorhexidine Compared with Seven Antifungal Agents against 98 Fusarium Isolates Recovered from Fungal Keratitis Patients.

  • Claudy Oliveira Dos Santos‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2019‎

Fungal keratitis is a common but severe eye infection in tropical and subtropical areas of the world. In regions with a temperate climate, the frequency of infection is rising in patients with contact lenses and following trauma. Early and adequate therapy is important to prevent disease progression and loss of vision. The management of Fusarium keratitis is complex, and the optimal treatment is not well defined. We investigated the in vitro activity of chlorhexidine and seven antifungal agents against a well-characterized collection of Fusarium isolates recovered from patients with Fusarium keratitis. The fungus culture collection of the Center of Expertise in Mycology Radboudumc/CWZ was searched for Fusarium isolates that were cultured from cornea scrapings, ocular biopsy specimens, eye swabs, and contact lens fluid containers from patients with suspected keratitis. The Fusarium isolates that were cultured from patients with confirmed keratitis were all identified using conventional and molecular techniques. Antifungal susceptibility testing was performed according to the EUCAST broth microdilution reference method. The antifungal agents tested included amphotericin B, voriconazole, posaconazole, miconazole, natamycin, 5-fluorocytosine, and caspofungin. In addition, the activity of chlorhexidine was determined. The fungal culture collection contained 98 Fusarium isolates of confirmed fungal keratitis cases from 83 Dutch patients and 15 Tanzanian patients. The isolates were collected between 2007 and 2017. Fusarium oxysporum (n = 24, 24.5%) was the most frequently isolated species followed by Fusarium solanisensu stricto (n = 18, 18.4%) and Fusarium petroliphilum (n = 11, 11.2%). Amphotericin B showed the most favorable in vitro inhibition of Fusarium species followed by natamycin, voriconazole, and chlorhexidine, while 5-fluorocytosine, posaconazole, miconazole, and caspofungin showed no relevant inhibiting effect. However, chlorhexidine showed fungicidal activity against 90% of F. oxysporum strains and 100% of the F. solani strains. Our study supports the clinical efficacy of chlorhexidine and therefore warrants its further clinical evaluation for primary therapy of fungal keratitis, particularly in low and middle income countries where fungal keratitis is much more frequent and, currently, antifungal eye drops are often unavailable.


Activity of a Long-Acting Echinocandin, Rezafungin, and Comparator Antifungal Agents Tested against Contemporary Invasive Fungal Isolates (SENTRY Program, 2016 to 2018).

  • Michael A Pfaller‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2020‎

We evaluated the activity of rezafungin and comparators, using Clinical and Laboratory Standards Institute (CLSI) broth microdilution methods, against a worldwide collection of 2,205 invasive fungal isolates recovered from 2016 to 2018. Candida (n = 1,904 isolates; 6 species), Cryptococcus neoformans (n = 73), Aspergillus fumigatus (n = 183), and Aspergillus flavus (n = 45) isolates were tested for their susceptibility (S) to rezafungin as well as the comparators caspofungin, anidulafungin, micafungin, and azoles. Interpretive criteria were applied following CLSI published clinical breakpoints (CBPs) and epidemiological cutoff values (ECVs). Isolates displaying non-wild-type (non-WT) echinocandin MIC values were sequenced for hot spot (HS) mutations. Rezafungin inhibited 99.8% of Candida albicans isolates (MIC50/90, 0.03/0.06 μg/ml), 95.7% of Candida glabrata isolates (MIC50/90, 0.06/0.12 μg/ml), 97.4% of Candida tropicalis isolates (MIC50/90, 0.03/0.06 μg/ml), 100.0% of Candida krusei isolates (MIC50/90, 0.03/0.06 μg/ml), and 100.0% of Candida dubliniensis isolates (MIC50/90, 0.06/0.12 μg/ml) at ≤0.12 μg/ml. All (329/329 [100.0%]) Candida parapsilosis isolates (MIC50/90,1/2 μg/ml) were inhibited by rezafungin at ≤4 μg/ml. Fluconazole resistance was detected among 8.6% of C. glabrata isolates, 12.5% of C. parapsilosis isolates, 3.2% of C. dubliniensis isolates, and 2.6% of C. tropicalis isolates. The activity of rezafungin against these 6 Candida spp. was similar to the activity of the other echinocandins. Detection of the HS mutation was performed by sequencing echinocandin-resistant or non-WT Candida isolates. Good activity against C. neoformans was observed for fluconazole and the other azoles, whereas the echinocandins, including rezafungin, displayed limited activity. Rezafungin displayed activity similar to that of the other echinocandins against A. fumigatus and A. flavus These in vitro data contribute to accumulating research demonstrating the potential of rezafungin for preventing and treating invasive fungal infections.


Improved Methods for Assessing Therapeutic Potential of Antifungal Agents against Dermatophytes and Their Application in the Development of NP213, a Novel Onychomycosis Therapy Candidate.

  • Derry K Mercer‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2019‎

Onychomycosis is a common, difficult-to-treat nail infection that is mainly caused by dermatophytes. Current therapies are not wholly effective and are associated with manifold side effects. The development of treatments for onychomycosis is challenging because standard in vitro tests are not predictive of antifungal efficacy within the nail. We have developed a new antifungal agent, NP213, for the treatment of onychomycosis. NP213 is based on endogenous host defense peptides produced within the nail. We compared the in vitro activity of NP213 and existing antifungal agents using conventional antimicrobial susceptibility test (AST) systems and more physiologically relevant models based on the human nail. We observed that the standard in vitro AST methodologies failed to predict the efficacy of antifungal agents within the nail. To address that, we present a more physiologically relevant modified AST method. This method, alongside other standard in vitro assessments of activity (including mechanism-of-action and time-of-kill studies), better reflected the activity of NP213 and other antifungal agents within the nail than standard in vitro AST methods. NP213 is a rapidly acting, fungicidal peptide that is superior to existing antifungal agents in vitro It penetrated the nail more effectively than other antifungals, as confirmed by using an optimized in vitro nail infection model. The data presented here support the current clinical development status of NP213 as a novel agent for treating onychomycosis. We propose that the modified tests developed and applied for NP213 characterization are the most relevant to use for screening any potential therapeutic candidates for onychomycosis.


Potency of olorofim (F901318) compared to contemporary antifungal agents against clinical Aspergillus fumigatus isolates, and review of azole resistance phenotype and genotype epidemiology in China.

  • Huilin Su‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2023‎

Triazole resistance in A. fumigatus is an increasing worldwide problem that causes major challenges in the management of aspergillosis. New antifungal drugs are needed with novel targets, that are effective in triazole-resistant infection. In this study, we retrospectively evaluated potency of the novel drug olorofim compared to contemporary antifungal agents against 111 clinical A. fumigatus isolates collected from Huashan Hospital, Shanghai, China, using EUCAST methodology, and reviewed the literature on triazole resistant A. fumigatus published between 1966 and 2020 in China. Olorofim was active in vitro against all tested A. fumigatus isolates with MIC90 of 0.031mg/L (range 0.008-0.062 mg/L). For 4 triazole-resistant A. fumigatus (TRAF) isolates, the olorofim MIC ranged between 0.016-0.062mg/L. The reported rates of TRAF in China is 2.5% - 5.56% for clinical isolates, and 0-1.4% for environmental isolates.TR34/L98H/S297T/F495I is the predominant resistance mechanism, followed by TR34/L98H. Non TR-mediated TRAF isolates, mostly harboring a cyp51A single point mutation, showed greater genetic diversity than TR-mediated resistant isolates. Resistance due toTR34/L98H and TR34/L98H/S297T/F495I mutations among TRAF isolates might have evolved from separate local isolates in China. Continuous isolation of TRAF in China underscores the need for systematic resistance surveillance as well as the need for novel drug targets such as olorofim.


In Vitro Activity of a Novel Antifungal Compound, MYC-053, against Clinically Significant Antifungal-Resistant Strains of Candida glabrata, Candida auris, Cryptococcus neoformans, and Pneumocystis spp.

  • G Tetz‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2019‎

An urgent need exists for new antifungal compounds to treat fungal infections in immunocompromised patients. The aim of the current study was to investigate the potency of a novel antifungal compound, MYC-053, against the emerging yeast and yeast-like pathogens Candida glabrata, Candida auris, Cryptococcus neoformans, and Pneumocystis species. MYC-053 was equally effective against the susceptible control strains, clinical isolates, and resistant strains, with MICs of 0.125 to 4.0 μg/ml. Notably, unlike other antifungals such as azoles, polyenes, and echinocandins, MYC-053 was effective against Pneumocystis isolates, therefore being the only synthetic antifungal that may potentially be used against Pneumocystis spp., Candida spp., and Cryptococcus spp. MYC-053 was highly effective against preformed 48-h-old C. glabrata and C. neoformans biofilms, with minimal biofilm eradication concentrations equal to 1 to 4 times the MIC. Together, these data indicated that MYC-053 may be developed into a promising antifungal agent for the treatment and prevention of invasive fungal infections caused by yeasts and yeast-like fungi.


Identification of Antifungal H+-ATPase Inhibitors with Effect on Plasma Membrane Potential.

  • Lasse Kjellerup‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2017‎

The plasma membrane H+-ATPase (Pma1) is an essential fungal protein and a proposed target for new antifungal medications. The compounds in a small-molecule library containing ∼191,000 commercially available compounds were screened for their ability to inhibit Saccharomyces cerevisiae plasma membranes containing Pma1. The overall hit rate was 0.2%, corresponding to 407 compounds. These hit compounds were further evaluated for ATPase selectivity and broad-spectrum antifungal activity. Following this work, one Pma1 inhibitor series based on compound 14 and analogs was selected for further evaluation. This compound series was able to depolarize the membrane and inhibit extracellular acidification in intact fungal cells concomitantly with a significant increase in intracellular ATP levels. Collectively, we suggest that these effects may be a common feature of Pma1 inhibitors. Additionally, the work uncovered a dual mechanism for the previously identified cationic peptide BM2, revealing fungal membrane disruption, in addition to Pma1 inhibition. The methods presented here provide a solid platform for the evaluation of Pma1-specific inhibitors in a drug development setting. The present inhibitors could serve as a starting point for the development of new antifungal agents with a novel mode of action.


Preliminary Characterization of NP339, a Novel Polyarginine Peptide with Broad Antifungal Activity.

  • Vanessa Duncan‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2021‎

Fungi cause disease in nearly one billion individuals worldwide. Only three classes of antifungal agents are currently available in mainstream clinical use. Emerging and drug-resistant fungi, toxicity, and drug-drug interactions compromise their efficacy and applicability. Consequently, new and improved antifungal therapies are urgently needed. In response to that need, we have developed NP339, a 2-kDa polyarginine peptide that is active against pathogenic fungi from the genera Candida, Aspergillus, and Cryptococcus, as well as others. NP339 was designed based on endogenous cationic human defense peptides, which are constituents of the cornerstone of immune defense against pathogenic microbes. NP339 specifically targets the fungal cell membrane through a charge-charge-initiated membrane interaction and therefore possesses a differentiated safety and toxicity profile to existing antifungal classes. NP339 is rapidly fungicidal and does not elicit resistance in target fungi upon extensive passaging in vitro. Preliminary analyses in murine models indicate scope for therapeutic application of NP339 against a range of systemic and mucocutaneous fungal infections. Collectively, these data indicate that NP339 can be developed into a highly differentiated, first-in-class antifungal candidate for poorly served invasive and other serious fungal diseases.


Ciclopirox and Efinaconazole Transungual Permeation, Antifungal Activity, and Proficiency To Induce Resistance in Trichophyton rubrum.

  • Daniela Monti‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2019‎

Onychomycosis is a nail fungal infection, mostly caused by dermatophytes. The treatment efficacy is impaired by difficulties of reaching effective drug levels at the site of infection; frequent relapses occur after cessation of antifungal therapy. The aim of the study was to compare two commercial products containing ciclopirox or efinaconazole for antimycotic activity and antifungal drug resistance. A study of permeation and penetration through bovine hoof membranes, as a nail model, was performed to evaluate the antimycotic activity of permeates against clinical isolates of selected fungi, and the frequency of spontaneous in vitroTrichophyton rubrum-resistant strains was assessed by broth microdilution assays. The results suggest that ciclopirox creates a depot in the nail, leading to a gradual release of the drug over time with action on both the nail plate and bed. Conversely, efinaconazole, mildly interacting with nail keratin, mainly exerts its antifungal activity in the nail bed. However, in the case of T. rubrum, the antifungal activities of the drugs in the nail plate seem comparable. Finally, efinaconazole showed a potential for induction of resistance in T. rubrum, which may limit its efficacy over time. Ciclopirox did not show any potential to induce resistance in T. rubrum and appears endowed with a more complete activity than efinaconazole in the management of onychomycosis as the nail keratin is a substrate for the growth of fungal cells, and the availability of drug in large concentration just in the nail bed may not be sufficient to guarantee the complete eradication of pathogens.


Antifungal Susceptibility and Mutations in the Squalene Epoxidase Gene in Dermatophytes of the Trichophyton mentagrophytes Species Complex.

  • Xue Kong‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2021‎

During the past decade, a prolonged and serious outbreak of dermatophytosis due to a terbinafine-resistant novel species in the Trichophyton mentagrophytes-T. interdigitale complex has been ongoing in India, and it has spread to several European countries. The objective of this study was to investigate the molecular background of the squalene epoxidase (SQLE) gene in order to understand the risk of emergence and spread of multiresistance in dermatophytes. Antifungal susceptibility to fluconazole, griseofulvin, itraconazole, ketoconazole, miconazole, naftifine, sertaconazole, and terbinafine was tested in 135 isolates from India, China, Australia, Germany, and The Netherlands. Based on the latest taxonomic insights, strains were identified as three species: T. mentagrophytes sensu stricto (n = 35), T. indotineae (n = 64, representing the Indian clone), and T. interdigitale sensu stricto (n = 36). High MICs of terbinafine (>16 mg/liter) were found in 34 (53%) T. indotineae isolates. These isolates showed an amino acid substitution in the 397th position of the SQLE gene. Elevated MICs of terbinafine (0.5 mg/liter) were noted in 2 (3%) T. indotineae isolates; these isolates lead to Phe415Val and Leu393Ser of the SQLE gene. The stability of the effect of the mutations was proven by serial transfer on drug-free medium. Lys276Asn and Leu419Phe substitutions were found in susceptible T. mentagrophytes strains. The Phe377Leu/Ala448Thr double mutant showed higher MIC values for triazoles. High MICs of terbinafine are as yet limited to T. indotineae and are unlikely to be distributed throughout the T. mentagrophytes species complex by genetic exchange.


cyp51A Mutations, Extrolite Profiles, and Antifungal Susceptibility in Clinical and Environmental Isolates of the Aspergillus viridinutans Species Complex.

  • Jessica J Talbot‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2019‎

The past decade has seen an increase in aspergillosis in humans and animals due to Aspergillus viridinutans species complex members. Azole resistance is common to these infections, carrying a poor prognosis. cyp51A gene mutations are the main cause of acquired azole resistance in Aspergillus fumigatus This study aimed to determine if the azole-resistant phenotype in A. viridinutans complex members is associated with cyp51A mutations or extrolite profiles. The cyp51A gene of clinical and environmental isolates was amplified using novel primers, antifungal susceptibility was tested using the Clinical and Laboratory Standards Institute methodology, and extrolite profiling was performed using agar plug extraction. Very high azole MICs were detected in 84% of the isolates (31/37). The MICs of the newer antifungals luliconazole and olorofim (F901318) were low for all isolates. cyp51A sequences revealed 113 nonsynonymous mutations compared to the sequence of wild-type A. fumigatus M172A/V and D255G, previously associated with A. fumigatus azole resistance, were common among all isolates but were not correlated with azole MICs. Two environmental isolates with nonsusceptibility to itraconazole and high MICs of voriconazole and isavuconazole harbored G138C, previously associated with azole-resistant A. fumigatus Some novel mutations were identified only among isolates with high azole MICs. However, cyp51A homology modeling did not cause a significant protein structure change for these mutations. There was no correlation between extrolite patterns and susceptibility. For A. viridinutans complex isolates, cyp51A mutations and the extrolites that they produced were not major causes of antifungal resistance. Luliconazole and olorofim show promise for treating azole-resistant infections caused by these cryptic species.


In Vitro and In Vivo Antifungal Profile of a Novel and Long-Acting Inhaled Azole, PC945, on Aspergillus fumigatus Infection.

  • Thomas Colley‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2017‎

The profile of PC945, a novel triazole antifungal designed for administration via inhalation, was assessed in a range of in vitro and in vivo studies. PC945 was characterized as a potent, tightly binding inhibitor of Aspergillus fumigatus sterol 14α-demethylase (CYP51A and CYP51B) activity (50% inhibitory concentrations [IC50s], 0.23 μM and 0.22 μM, respectively) with characteristic type II azole binding spectra. Against 96 clinically isolated A. fumigatus strains, the MIC values of PC945 ranged from 0.032 to >8 μg/ml, while those of voriconazole ranged from 0.064 to 4 μg/ml. Spectrophotometric analysis of the effects of PC945 against itraconazole-susceptible and -resistant A. fumigatus growth yielded IC50 (determined based on optical density [OD]) values of 0.0012 to 0.034 μg/ml, whereas voriconazole (0.019 to >1 μg/ml) was less effective than PC945. PC945 was effective against a broad spectrum of pathogenic fungi (with MICs ranging from 0.0078 to 2 μg/ml), including Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans, and Rhizopus oryzae (1 or 2 isolates each). In addition, when A. fumigatus hyphae or human bronchial cells were treated with PC945 and then washed, PC945 was found to be absorbed quickly into both target and nontarget cells and to produce persistent antifungal effects. Among temporarily neutropenic immunocompromised mice infected with A. fumigatus intranasally, 50% of the animals survived until day 7 when treated intranasally with PC945 at 0.56 μg/mouse, while posaconazole showed similar effects (44%) at 14 μg/mouse. This profile affirms that topical treatment with PC945 should provide potent antifungal activity in the lung.


Liposomal formulation of a new antifungal hybrid compound provides protection against Candida auris in the ex vivo skin colonization model.

  • Anna Jaromin‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2024‎

The newly emerged pathogen, Candida auris, presents a serious threat to public health worldwide. This multidrug-resistant yeast often colonizes and persists on the skin of patients, can easily spread from person to person, and can cause life-threatening systemic infections. New antifungal therapies are therefore urgently needed to limit and control both superficial and systemic C. auris infections. In this study, we designed a novel antifungal agent, PQA-Az-13, that contains a combination of indazole, pyrrolidine, and arylpiperazine scaffolds substituted with a trifluoromethyl moiety. PQA-Az-13 demonstrated antifungal activity against biofilms of a set of 10 different C. auris clinical isolates, representing all four geographical clades distinguished within this species. This compound showed strong activity, with MIC values between 0.67 and 1.25 µg/mL. Cellular proteomics indicated that PQA-Az-13 partially or completely inhibited numerous enzymatic proteins in C. auris biofilms, particularly those involved in both amino acid biosynthesis and metabolism processes, as well as in general energy-producing processes. Due to its hydrophobic nature and limited aqueous solubility, PQA-Az-13 was encapsulated in cationic liposomes composed of soybean phosphatidylcholine (SPC), 1,2-dioleoyloxy-3-trimethylammonium-propane chloride (DOTAP), and N-(carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt (DSPE-PEG 2000), and characterized by biophysical and spectral techniques. These PQA-Az-13-loaded liposomes displayed a mean size of 76.4 nm, a positive charge of +45.0 mV, a high encapsulation efficiency of 97.2%, excellent stability, and no toxicity to normal human dermal fibroblasts. PQA-Az-13 liposomes demonstrated enhanced antifungal activity levels against both C. auris in in vitro biofilms and ex vivo skin colonization models. These initial results suggest that molecules like PQA-Az-13 warrant further study and development.


Antifungal Effect of All-trans Retinoic Acid against Aspergillus fumigatus In Vitro and in a Pulmonary Aspergillosis In Vivo Model.

  • Elena Campione‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2021‎

Aspergillus fumigatus is the most common opportunistic fungal pathogen and causes invasive pulmonary aspergillosis (IPA), with high mortality among immunosuppressed patients. The fungistatic activity of all-trans retinoic acid (ATRA) has been recently described in vitro We evaluated the efficacy of ATRA in vivo and its potential synergistic interaction with other antifungal drugs. A rat model of IPA and in vitro experiments were performed to assess the efficacy of ATRA against Aspergillus in association with classical antifungal drugs and in silico studies used to clarify its mechanism of action. ATRA (0.5 and 1 mM) displayed a strong fungistatic activity in Aspergillus cultures, while at lower concentrations, synergistically potentiated fungistatic efficacy of subinhibitory concentration of amphotericin B (AmB) and posaconazole (POS). ATRA also enhanced macrophagic phagocytosis of conidia. In a rat model of IPA, ATRA reduced mortality similarly to posaconazole. Fungistatic efficacy of ATRA alone and synergistically with other antifungal drugs was documented in vitro, likely by inhibiting fungal heat shock protein 90 (Hsp90) expression and Hsp90-related genes. ATRA treatment reduced mortality in a model of IPA in vivo Those findings suggest ATRA as a suitable fungistatic agent that can also reduce dosage and adverse reactions of classical antifungal drugs and add to the development of new therapeutic strategies against IPA and systemic fungal infections.


Berberine Antifungal Activity in Fluconazole-Resistant Pathogenic Yeasts: Action Mechanism Evaluated by Flow Cytometry and Biofilm Growth Inhibition in Candida spp.

  • Anderson Ramos da Silva‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2016‎

The incidence of fungal infections and, in particular, the incidence of fungal antibiotic resistance, which is associated with biofilm formation, have significantly increased, contributing to morbidity and mortality. Thus, new therapeutic strategies need to be developed. In this context, natural products have emerged as a major source of possible antifungal agents. Berberine is a protoberberine-type isoquinoline alkaloid isolated from the roots, rhizomes, and stem bark of natural herbs, such as Berberis aquifolium, Berberis vulgaris, Berberis aristata, and Hydrastis canadensis, and of Phellodendron amurense Berberine has been proven to have broad antibacterial and antifungal activity. In the present study, the potential antifungal effect of berberine against fluconazole-resistant Candida and Cryptococcus neoformans strains, as well as against the biofilm form of Candida spp., was assessed. The antifungal effect of berberine was determined by a broth microdilution method (the M27-A3 method of the Clinical and Laboratory Standards Institute) and flow cytometry techniques, in which the probable mechanism of action of the compound was also assessed. For biofilm assessment, a colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine the susceptibility of sessile cells. The isolates used in the study belonged to the Laboratory of Bioprospection and Experiments in Yeast (LABEL) of the Federal University of Ceará. After 24 and 72 h, fluconazole-resistant Candida and Cryptococcus neoformans strains showed berberine MICs equal to 8 μg/ml and 16 μg/ml, respectively. Cytometric analysis showed that treatment with berberine caused alterations to the integrity of the plasma and mitochondrial membranes and DNA damage, which led to cell death, probably by apoptosis. Assessment of biofilm-forming isolates after treatment showed statistically significant reductions in biofilm cell activity (P < 0.001).


In Vivo Biomarker Analysis of the Effects of Intranasally Dosed PC945, a Novel Antifungal Triazole, on Aspergillus fumigatus Infection in Immunocompromised Mice.

  • Genki Kimura‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2017‎

PC945 is a novel triazole optimized for lung delivery, and the objective of this study is to determine the effects of intranasally dosed PC945 on Aspergillus fumigatus infection and associated biomarkers in immunocompromised mice. PC945, posaconazole, or voriconazole was administered intranasally once daily on days 0 to 3 (early intervention) or days 1 to 3 (late intervention) postinfection in temporarily neutropenic A/J mice infected intranasally with A. fumigatus, and bronchoalveolar lavage fluid (BALF) and serum were collected on day 3. The effects of extended prophylaxis treatment (daily from days -7 to +3 or days -7 to 0) were also compared with those of the shorter treatment regimens (days -1 to +3 or days -1 and 0). Early and late interventions with PC945 (2.8 to 350 μg/mouse; approximately 0.11 to ∼14 mg/kg of body weight) were found to inhibit lung fungal loads and to decrease the concentrations of galactomannan (GM) in both BALF and serum as well as several biomarkers in BALF (interferon gamma [IFN-γ], interleukin-17 [IL-17], and malondialdehyde) and serum (tumor necrosis factor alpha [TNF-α] and IL-6) in a dose-dependent manner and were >3- and >47-fold more potent than intranasally dosed posaconazole and voriconazole, respectively. Furthermore, extended prophylaxis with low-dose PC945 (0.56 μg/mouse; 0.022 mg/kg) was found to inhibit fungal loads and to decrease the concentrations biomarkers more potently than did the shorter treatment regimens. Thus, PC945 dosed intranasally once daily showed potent antifungal effects, and the effects of PC945 accumulated upon repeat dosing and were persistent. Therefore, PC945 has the potential to be a novel inhaled therapy for the treatment of A. fumigatus infection in humans.


CWHM-974 is a fluphenazine derivative with improved antifungal activity against Candida albicans due to reduced susceptibility to multidrug transporter-mediated resistance mechanisms.

  • Aracely Miron-Ocampo‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2023‎

Multidrug resistance (MDR) transporters such as ATP-Binding Cassette (ABC) and Major Facilitator Superfamily proteins are important mediators of antifungal drug resistance, particularly with respect to azole class drugs. Consequently, identifying molecules that are not susceptible to this mechanism of resistance is an important goal for new antifungal drug discovery. As part of a project to optimize the antifungal activity of clinically used phenothiazines, we synthesized a fluphenazine derivative (CWHM-974) with 8-fold higher activity against Candida spp. compared to the fluphenazine and with activity against Candida spp. with reduced fluconazole susceptibility due to increased MDR transporters. Here, we show that the improved C. albicans activity is because fluphenazine induces its own resistance by triggering expression of Candida drug resistance (CDR) transporters while CWHM-974 induces expression but does not appear to be a substrate for the transporters or is insensitive to their effects through other mechanisms. We also found that fluphenazine and CWHM-974 are antagonistic with fluconazole in C. albicans but not in C. glabrata, despite inducing CDR1 expression to high levels. Overall, CWHM-974 is one of the few examples of a molecule in which relatively small structural modifications significantly reduced susceptibility to multidrug transporter-mediated resistance.


Evaluation of the Antifungal Activity of the Novel Oral Glucan Synthase Inhibitor SCY-078, Singly and in Combination, for the Treatment of Invasive Aspergillosis.

  • M Ghannoum‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2018‎

Invasive aspergillosis remains a major cause of death among the immunocompromised population and those receiving long-term immunosuppressive therapy. In light of increased azole resistance, variable outcomes with existing echinocandin monotherapy and combination therapy, and persistent high mortality rates, new antifungal agents for the treatment of invasive aspergillosis are clearly needed. SCY-078 is the first-in-class triterpenoid antifungal, a novel class of glucan synthase inhibitors with broad in vitro and in vivo activity against a broad spectrum of Candida and Aspergillus species. In vitro testing of clinical strains of Aspergillus fumigatus and non-fumigatus Aspergillus strains showed that SCY-078 had potent fungistatic activity (minimum effective concentration for 90% of strains tested = 0.125 μg/ml) compared with the activities of amphotericin B (MIC90 = 8 μg/ml) and voriconazole (MIC90 = 2 μg/ml). Testing of SCY-078 in combination with isavuconazole or voriconazole demonstrated synergistic activity against the majority of the azole-susceptible strains tested, and SCY-078 in combination with amphotericin B was synergistic against the azole-susceptible strains, as well as one known resistant cyp51A mutant. SCY-078 may be an important additional antifungal for first-line or salvage monotherapy or combination treatment of invasive aspergillosis.


Preclinical Pharmacokinetics and Pharmacodynamic Target of SCY-078, a First-in-Class Orally Active Antifungal Glucan Synthesis Inhibitor, in Murine Models of Disseminated Candidiasis.

  • Stephen A Wring‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2017‎

SCY-078 (MK-3118) is a novel, semisynthetic derivative of enfumafungin and represents the first compound of the triterpene class of antifungals. SCY-078 exhibits potent inhibition of β-(1,3)-d-glucan synthesis, an essential cell wall component of many pathogenic fungi, including Candida spp. and Aspergillus spp. SCY-078 is currently in phase 2 clinical development for the treatment of invasive fungal diseases. In vitro disposition studies to assess solubility, intestinal permeability, and metabolic stability were predictive of good oral bioavailability. Preclinical pharmacokinetic studies were consistent with once-daily administration to humans. After intravenous delivery, plasma clearance in rodents and dogs was low, representing <15% and <25% of hepatic blood flow, respectively. The terminal elimination-phase half-life was 5.5 to 8.7 h in rodents, and it was ∼9.3 h in dogs. The volume of distribution at steady-state was high (4.7 to 5.3 liters/kg), a finding suggestive of extensive tissue distribution. Exposure of SCY-078 in kidney tissue, a target organ for invasive fungal disease such as candidiasis, exceeded plasma by 20- to 25-fold for the area under the concentration-time curve from 0 h to infinity (AUC0-∞) and Cmax SCY-078 achieved efficacy endpoints following oral delivery across multiple murine models of disseminated candidiasis. The pharmacokinetic/pharmacodynamic indices Cmax/MIC and AUC/MIC correlated with outcome. Target therapeutic exposure, expressed as the plasma AUC0-24, was comparable across models, with an upper value of 11.2 μg·h/ml (15.4 μM·h); the corresponding mean value for free drug AUC/MIC was ∼0.75. Overall, these results demonstrate that SCY-078 has the oral and intravenous (i.v.) pharmacokinetic properties and potency in murine infection models of disseminated candidiasis to support further investigation as a novel i.v. and oral treatment for invasive fungal diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: