2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 188 papers

Reversine exhibits antineoplastic activity in JAK2V617F-positive myeloproliferative neoplasms.

  • Keli Lima‎ et al.
  • Scientific reports‎
  • 2019‎

JAK2/STAT signaling participates in the Ph-negative myeloproliferative neoplasms (MPN) pathophysiology and has been targeted by ruxolitinib, a JAK1/2 inhibitor. In the present study, the impact of ruxolitinib treatment on cytoskeleton-related genes expression was explored. In SET2 cells, AURKA and AURKB expression/activity were downregulated in a dose- and time-dependent manner by ruxolitinib. Reversine, a multikinase inhibitor selective for aurora kinases, reduced cell viability in a dose- and/or time-dependent manner in JAK2V617F cells. Reversine significantly increased apoptosis and mitotic catastrophe, and reduced cell proliferation and clonogenic capacity in SET2 and HEL cells. In the molecular scenario, reversine induced DNA damage and apoptosis markers, as well as, reduced AURKA and AURKB expression/activity. In SET2 cells, reversine modulated the expression of 32 out of 84 apoptosis-related genes investigated, including downregulation of antiapoptotic (BCL2, BCL2L1, and BIRC5) and upregulation of proapoptotic (BIK, BINP3, and BNIP3L) genes. Synergism experiments indicated that low dose of reversine had a potentiating effect under ruxolitinib treatment at low doses in SET2 cells. In summary, our exploratory study establishes new targets, related to the regulation of the cellular cytoskeleton, for potential pharmacological intervention in MPN. These findings indicate that AURKA and AURKB participate in the JAK2/STAT signaling pathway and contribute to the MPN phenotype.


Antineoplastic and Antitrypanosomal Properties of Propolis from Tetragonula biroi Friese.

  • Samyah Alanazi‎
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Propolis, popularly known as bee glue, is a resinous, sticky substance produced by different bee species across the globe. Studies on the biological properties of propolis from the Philippines are rare. Hence, the current study aims at the chemical characterization of propolis produced by the stingless bees Tetragonula biroi Friese from the Philippines and to investigate its antitrypanosomal and anticancer properties. The determination of the chemical composition and characterization of propolis samples was achieved using liquid chromatography-mass spectrometry (LC-MS), -high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD), and nuclear magnetic resonance (NMR) spectroscopy. Three major triterpenes were isolated and identified using HRESI-MS and 1H/13C NMR techniques. The spectral studies confirmed the presence of compounds such as isomangiferolic acid, 27-hydoxymangiferonic acid, and 27-hydroxyisomangiferolic acid. All crude propolis samples, isolated fractions, and pure compounds demonstrated moderate antitrypanosomal and anticancer properties compared to control drugs. Amongst the tested compounds, 27-hydoxymangiferonic acid exhibited the highest antitrypanosomal activity at a concentration of 11.6 µg/mL. The highest anticancer effect was demonstrated by the Ph-2 fraction, followed by 27-hydroxyisomangiferolic acid, with IC50 values of 129.6 and 153.3 µg/mL. Thus, it can be concluded that the observed biological activity of Philippine propolis is due to the combinatorial effect or synergistic action of the active compounds 27-hydoxymangiferonic acid and 27-hydroxyisomangiferolic acid.


Antineoplastic effects of auranofin in human pancreatic adenocarcinoma preclinical models.

  • Mayrim V Rios Perez‎ et al.
  • Surgery open science‎
  • 2019‎

Auranofin, a Food and Drug Administration-approved anti-rheumatic agent with anticancer properties for lung and ovarian cancer, has never been studied for pancreatic cancer. We hypothesize that auranofin may prevent pancreatic ductal adenocarcinoma progression by inhibition of Txnrd1 and HIF-1α.


Analysis of 12 cases of antineoplastic agents-induced interstitial lung disease.

  • Xiao Li‎ et al.
  • Frontiers in pharmacology‎
  • 2023‎

Objective: To summarize the situation of antineoplastic agents-induced interstitial lung diseases (ILD), provide reference for strengthening clinical management of druginduced interstitial lung diseases (DILD). Methods: We retrospectively investigated the medical records of 12 patients with antineoplastic agents-induced ILD in a hospital between January and December 2020. Data collected included patients' characteristic (gender, age, ECOG PS score, smoking history, primary tumor, concurrent diseases or complications.) and treatment conditions (DILD-causing drugs, clinical symptoms, chest CT, DILD treatment drugs, onset cycle, onset time, severity of DILD, DILD course and prognosis.). Results: The median age of 12 DILD cases was 68%, 66.67% of the patients were male, lung cancer accounted for 58.33% (7/12). DILD was induced by cytotoxicity drugs, targeted drugs and immune checkpoint inhibitors (ICIs), of which ICIs accounted for 66.67% (8/12). Scattered patchy, cord-like, grid-like or flocculent shadows were observed on chest CT, mainly under the pleura of lungs. Once DILD occurs, the suspected antineoplastic agents were stopped and glucocorticoid was given, among which 83.33% (10/12) patients were treated with antibiotics. Finally, 16.67% (2/12) were cured, 33.33% (4/12) were improved, 16.67% (2/12) were not cured and 33.33% (4/12) were dead. Conclusion: Antineoplastic agents-induced ILD is mostly found in elderly male lung cancer patients with smoking history. The clinical symptoms of DILD are diverse and lack of specificity. ICIs-ILD has the characteristic of high incidence and poor prognosis compared with other antineoplastic agents. Comprehensive evaluation before medication, regular review, early and adequate glucocorticoid shock therapy after onset can improve the prognosis of DILD patients.


Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles.

  • Shanid Mohiyuddin‎ et al.
  • Beilstein journal of nanotechnology‎
  • 2018‎

In the past few decades, the successful theranostic application of nanomaterials in drug delivery systems has significantly improved the antineoplastic potency of conventional anticancer therapy. Several mechanistic advantages of nanomaterials, such as enhanced permeability, retention, and low toxicity, as well as surface engineering with targeting moieties, can be used as a tool in enhancing the therapeutic efficacy of current approaches. Inorganic calcium phosphate nanoparticles have the potential to increase the therapeutic potential of antiproliferative drugs due to their excellent loading efficiency, biodegradable nature and controlled-release behaviour. Herein, we report a novel system of 5-fluorouracil (5-FU)-loaded calcium phosphate nanoparticles (CaP@5-FU NPs) synthesized via a reverse micelle method. The formation of monodispersed, spherical, crystalline nanoparticles with an approximate diameter of 160-180 nm was confirmed by different methods. The physicochemical characterization of the synthesized CaP@5-FU NPs was done with transmission electron microscopy (TEM), dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The antineoplastic potential of the CaP@5-FU NPs against colorectal and lung cancer cells was reported. The CaP@5-FU NPs were found to inhibit half the population (IC50) of lung adenocarcinoma (A549) cells at 32 μg/mL and colorectal (HCT-15) cancer cells at 48.5 μg/mL treatment. The apoptotic induction of CaP@5-FU NPs was confirmed with acridine orange/ethidium bromide (AO/EB) staining and by examining the morphological changes with Hoechst and rhodamine B staining in a time-dependent manner. The apparent membrane bleb formation was observed in FE-SEM micrographs. The up-regulated proapoptotic and down-regulated antiapoptotic gene expressions were further confirmed with semiquantitative reverse transcriptase polymerase chain reaction (PCR). The increased intracellular reactive oxygen species (ROS) were quantified via flow cytometry upon CaP@5-FU NP treatment. Likewise, the cell cycle analysis was performed to confirm the enhanced apoptotic induction. Our study concludes that the calcium phosphate nanocarriers system, i.e. CaP@5-FU NPs, has higher antineoplastic potential as compared to 5-FU alone and can be used as an improved alternative to the antimitotic drug, which causes severe side effects when administrated alone.


The pro- and antineoplastic effects of deoxycholic acid in pancreatic adenocarcinoma cell models.

  • Szandra Schwarcz‎ et al.
  • Molecular biology reports‎
  • 2023‎

Commensal bacteria secrete metabolites that reach distant cancer cells through the circulation and influence cancer behavior. Deoxycholic acid (DCA), a hormone-like metabolite, is a secondary bile acid specifically synthesized by intestinal microbes. DCA may have both pro- and antineoplastic effects in cancers.


The support of genetic evidence for cardiovascular risk induced by antineoplastic drugs.

  • Hui Cui‎ et al.
  • Science advances‎
  • 2020‎

Cardiovascular dysfunction is one of the most common complications of long-term cancer treatment. Growing evidence has shown that antineoplastic drugs can increase cardiovascular risk during cancer therapy, seriously affecting patient survival. However, little is known about the genetic factors associated with the cardiovascular risk of antineoplastic drugs. We established a compendium of genetic evidence that supports cardiovascular risk induced by antineoplastic drugs. Most of this genetic evidence is attributed to causal alleles altering the expression of cardiovascular disease genes. We found that antineoplastic drugs predicted to induce cardiovascular risk are significantly enriched in drugs associated with cardiovascular adverse reactions, including many first-line cancer treatments. Functional experiments validated that retinoid X receptor agonists can reduce triglyceride lipolysis, thus modulating cardiovascular risk. Our results establish a link between the causal allele of cardiovascular disease genes and the direction of pharmacological modulation, which could facilitate cancer drug discovery and clinical trial design.


Efficiency of four solutions in removing 23 conventional antineoplastic drugs from contaminated surfaces.

  • Nicolas Simon‎ et al.
  • PloS one‎
  • 2020‎

Residual contamination by intravenous conventional antineoplastic drugs (ICAD) is still a daily issue in hospital facilities. This study aimed to compare the efficiency (EffQ) of 4 different solutions to remove 23 widely used ICADs from surfaces.


In Vitro Antineoplastic and Antiviral Activity and In Vivo Toxicity of Geum urbanum L. Extracts.

  • Maya M Zaharieva‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

This study evaluated the in vitro antineoplastic and antiviral potential and in vivo toxicity of twelve extracts with different polarity obtained from the herbaceous perennial plant Geum urbanum L. (Rosaceae). In vitro cytotoxicity was determined by ISO 10993-5/2009 on bladder cancer, (T-24 and BC-3C), liver carcinoma (HEP-G2) and normal embryonic kidney (HEK-293) cell lines. The antineoplastic activity was elucidated through assays of cell clonogenicity, apoptosis induction, nuclear factor kappa B p65 (NFκB p65) activation and total glutathione levels. Neutral red uptake study was applied for antiviral activity. The most promising G. urbanum extract was analyzed by UHPLC-HRMS. The acute in vivo toxicity analysis was carried out following OEDC 423. The ethyl acetate extract of aerial parts (EtOAc-AP) exhibited the strongest antineoplastic activity on bladder cancer cell lines (IC50 = 21.33-25.28 µg/mL) by inducing apoptosis and inhibiting NFκB p65 and cell clonogenicity. EtOAc and n-butanol extracts showed moderate antiviral activity against human adenovirus type 5 and human simplex virus type I. Seventy four secondary metabolites (gallic and ellagic acid derivatives, phenolic acids, flavonoids, etc.) were identified in EtOAc-AP by UHPLC-HRMS. This extract induced no signs of acute toxicity in liver and kidney specimens of H-albino mice in doses up to 210 mg/kg. In conclusion, our study contributes substantially to the detailed pharmacological characterization of G. urbanum, thus helping the development of health-promoting phytopreparations.


Preclinical study of a Kv11.1 potassium channel activator as antineoplastic approach for breast cancer.

  • Daniela F Fukushiro-Lopes‎ et al.
  • Oncotarget‎
  • 2018‎

Potassium ion (K+) channels have been recently found to play a critical role in cancer biology. Despite that pharmacologic manipulation of ion channels is recognized as an important therapeutic approach, very little is known about the effects of targeting of K+ channels in cancer. In this study, we demonstrate that use of the Kv11.1 K+ channel activator NS1643 inhibits tumor growth in an in vivo model of breast cancer. Tumors exposed to NS1643 had reduced levels of proliferation markers, high expression levels of senescence markers, increased production of ROS and DNA damage compared to tumors of untreated mice. Importantly, mice treated with NS1643 did not exhibit significant cardiac dysfunction. In conclusion, pharmacological stimulation of Kv11.1 activity produced arrested TNBC-derived tumor growth by generating DNA damage and senescence without significant side effects. We propose that use of Kv11.1 channels activators could be considered as a possible pharmacological strategy against breast tumors.


Anti-tumor activity of selinexor in combination with antineoplastic agents in chronic lymphocytic leukemia.

  • Candida Vitale‎ et al.
  • Scientific reports‎
  • 2023‎

Despite recent relevant therapeutic progresses, chronic lymphocytic leukemia (CLL) remains an incurable disease. Selinexor, an oral inhibitor of the nuclear export protein XPO1, is active as single agent in different hematologic malignancies, including CLL. The purpose of this study was to evaluate the anti-tumor effects of selinexor, used in combination with chemotherapy drugs (i.e. fludarabine and bendamustine) or with the PI3Kδ inhibitor idelalisib in CLL. Our results showed a significant decrease in CLL cell viability after treatment with selinexor-containing drug combinations compared to each single compound, with demonstration of synergistic cytotoxic effects. Interestingly, this drug synergism was exerted also in the presence of the protective effect of stromal cells. From the molecular standpoint, the synergistic cytotoxic activity of selinexor plus idelalisib was associated with increased regulatory effects of this drug combination on the tumor suppressors FOXO3A and IkBα compared to each single compound. Finally, selinexor was also effective in potentiating the in vivo anti-tumor effects of the PI3Kδ inhibitor in mice treated with the drug combination compared to single agents. Our data provide preclinical evidence of the synergism and potential efficacy of a combination treatment targeting XPO1 and PI3Kδ in CLL.


Portable solid-state sensor for therapeutic monitoring of an antineoplastic drug; vinblastine in human plasma.

  • Maha Mohammed Galal‎ et al.
  • RSC advances‎
  • 2020‎

During cancer treatment, doses must be carefully administered and monitored to guarantee efficacy and minimize side-effects. A potentiometric sensor was developed for the direct real-time assay of a widely used antineoplastic drug (vinblastine (VB)) in plasma samples. Membrane cocktails were drop-casted over a glassy-carbon electrode coated with a lipophilic conducting polymer (polyaniline). The study investigated five cation exchangers, five plasticizers (of different polarities and dielectric constants), and four ionophores with different physicochemical characters on the sensor performance. The study substantiates a data-driven selection of the optimum membrane recipe. The latter included sodium tetraphenylborate as an ion exchanger, dioctylphthalate as a plasticizer, and hydroxypropyl-β-cyclodextrin as ionophore. The membrane proved a near-Nernstian slope of 37.5 mV per decade, a LOQ of 2.99 × 10-6 M, and a stable fast response. The selectivity study proved poor responses to common physiological ions. The developed sensor was used for the determination of VB in its pure powder form, marketed formulation, and plasma samples. The fast and direct sensor response enables a wide range of applications in quality control laboratories and clinical studies.


Incorporation of docetaxel and thymoquinone in borage nanoemulsion potentiates their antineoplastic activity in breast cancer cells.

  • Mayson H Alkhatib‎ et al.
  • Scientific reports‎
  • 2020‎

Combining more than one anticancer agent in a nanocarrier is beneficial in producing a formula with a low dose and limited adverse side effects. The current study aimed to formulate docetaxel (DTX) and thymoquinone (TQ) in borage oil-based nanoemulsion (B-NE) and evaluate its potential in impeding the growth of breast cancer cells. The formulated B-NE and the combination (DTX + TQ) B-NE were prepared by the ultra-sonication method and physically characterized by the dynamic light scattering techniques. The cytotoxicity analyses of (DTX + TQ) B-NE in MCF-7 and MDA-MB-231 cells were evaluated in vitro by using the SRB assay. Cell death mechanisms were investigated in terms of apoptosis and autophagy pathways by flow cytometry. The optimum mean droplet sizes formulated for blank B-NE and the (DTX + TQ) B-NE were 56.04 ± 4.00 nm and 235.00 ± 10.00 nm, respectively. The determined values of the half-maximal inhibitory concentration (IC50) of mixing one-half amounts of DTX and TQ in B-NE were 1.15 ± 0.097 µM and 0.47 ± 0.091 µM in MCF-7 and MDA-MB-231 cells, respectively, which were similar to the IC50 values of the full amount of free DTX in both tested cell lines. The treatment with (DTX + TQ) B-NE resulted in a synergistic effect on both tested cells. (DTX + TQ) B-NE induced apoptosis that was integrated with the stimulation of autophagy. The produced formulation enhances the DTX efficacy against human breast cancer cells by reducing its effective dose, and thus it could have the potential to minimize the associated toxicity.


Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway.

  • Yuanyuan Zheng‎ et al.
  • Oncology letters‎
  • 2020‎

Gastric cancer (GC) is one of the most common malignancies worldwide; however, treatment options other than surgery remain limited. Neoadjuvant chemotherapy has the potential to suppress of gastric tumorigenesis. Garcinol has been reported to exert inhibitory effects on the progression of numerous carcinomas. However, its effects in GC remain unclear. Therefore, the aim of the present study was to investigate the effects of garcinol on the proliferation, invasion and apoptosis of gastric carcinoma cells and then to explore the underlying mechanisms. Garcinol significantly decreased the proliferation and invasion of GC cells and increased apoptosis in a dose-dependent manner. Additionally, the expression of AKTp-Thr308, cyclin D1, Bcl-2, BAX, matrix metalloprotease (MMP-2) and MMP-9 in HGC-27 cells following treatment with garcinol. The results obtained in the present study suggested that garcinol may inhibit gastric tumorigenesis by suppressing the PI3K/AKT signaling pathway.


Antineoplastic Activity of Chrysin against Human Hepatocellular Carcinoma: New Insight on GPC3/SULF2 Axis and lncRNA-AF085935 Expression.

  • Iman O Sherif‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The natural flavonoid chrysin possesses antiproliferative activity against various types of cancers, including hepatocellular carcinoma (HCC), which is a common malignancy. However, the exact mechanism of chrysin antiproliferative activity remains unclear. This research was executed to explore the impact of chrysin on glypican-3 (GPC3)/sulfatase-2 (SULF2) axis and lncRNA-AF085935 expression in HCC using HepG2 cells. Cisplatin (20, 50, 100 μg/mL), chrysin (15, 30, and 60 μg/mL) and the combination of 50 μg/mL cisplatin with different concentrations of chrysin were applied for 24/48 h. Cell viability was determined by MTT assay. Protein levels of GPC3 and SULF2 were measured by ELISA at 24/48 h. GPC3 immunoreactivity was detected by immunocytochemistry. Moreover, GPC3 and SULF2 mRNA expressions in addition to lncRNA-AF085935 expression were assessed by qPCR at 48 h. The GPC3 protein, immunostaining and mRNA levels, SULF2 protein and mRNA levels, as well as lncRNA-AF085935 expression, were decreased significantly with cisplatin and chrysin alone when compared with the control untreated HepG2 cells. However, the combination treatment exhibited a better chemopreventive effect in a dose- and time-dependent manner. This study demonstrated, for the first time, the antiproliferative activity of chrysin against HCC through the suppression of the GPC3/SULF2 axis along with the downregulation of lncRNA-AF085935 expression. Synergistic effect of chrysin with cisplatin could potentiate their antiproliferative action in a dose- and time-dependent manner.


Nanocarriers of Fe3O4 as a Novel Method for Delivery of the Antineoplastic Agent Doxorubicin Into HeLa Cells in vitro.

  • Kun-Kun Xia‎ et al.
  • Frontiers in oncology‎
  • 2019‎

Here we report the synthesis and in vitro characterization of a redox-sensitive, magnetically inducible nanoparticle carrier system based on the doxorubicin (DOX) drug delivery model. Each quantal nanocarrier unit consists of a magnetite Fe3O4 nanoparticle core that is further encapsulated in self-assembled micelles of the redox-responsive polyethylene glycol derivative, DSPE-SS-mPEG. The nanocarrier system was prepared using a combination of ultrasonication and dialysis to produce the microenvironment sensitive delivery system. The final synthesized and DOX-loaded magnetic nanocarriers had an average size of ~150 nm when assembled with a 6.9% DOX payload. The release rate of DOX from these redox-responsive magnetic nanocarriers was shown to be accelerated in vitro when in the presence of glutathione (GSH). Furthermore, we demonstrated that more redox-responsive magnetic nanocarriers could be taken up by HeLa cells when a local magnetic field was applied. Once internalized within a cell, the micelles of the outer nanocarrier complex were broken down in the presence of higher concentrations of GSH, which accelerated the release of DOX. This produces a particle with dual operating characteristics that can be controlled via a specific cellular environment coupled with an exogenously applied signal in the form of a magnetic field triggering release.


Novel Polymyxin Combination With Antineoplastic Mitotane Improved the Bacterial Killing Against Polymyxin-Resistant Multidrug-Resistant Gram-Negative Pathogens.

  • Thien B Tran‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Due to limited new antibiotics, polymyxins are increasingly used to treat multidrug-resistant (MDR) Gram-negative bacteria, in particular carbapenem-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Unfortunately, polymyxin monotherapy has led to the emergence of resistance. Polymyxin combination therapy has been demonstrated to improve bacterial killing and prevent the emergence of resistance. From a preliminary screening of an FDA drug library, we identified antineoplastic mitotane as a potential candidate for combination therapy with polymyxin B against polymyxin-resistant Gram-negative bacteria. Here, we demonstrated that the combination of polymyxin B with mitotane enhances the in vitro antimicrobial activity of polymyxin B against 10 strains of A. baumannii, P. aeruginosa, and K. pneumoniae, including polymyxin-resistant MDR clinical isolates. Time-kill studies showed that the combination of polymyxin B (2 mg/L) and mitotane (4 mg/L) provided superior bacterial killing against all strains during the first 6 h of treatment, compared to monotherapies, and prevented regrowth and emergence of polymyxin resistance in the polymyxin-susceptible isolates. Electron microscopy imaging revealed that the combination potentially affected cell division in A. baumannii. The enhanced antimicrobial activity of the combination was confirmed in a mouse burn infection model against a polymyxin-resistant A. baumannii isolate. As mitotane is hydrophobic, it was very likely that the synergistic killing of the combination resulted from that polymyxin B permeabilized the outer membrane of the Gram-negative bacteria and allowed mitotane to enter bacterial cells and exert its antimicrobial effect. These results have important implications for repositioning non-antibiotic drugs for antimicrobial purposes, which may expedite the discovery of novel therapies to combat the rapid emergence of antibiotic resistance.


Antineoplastic Activity of Rhus trilobata Nutt. (Anacardiaceae) against Ovarian Cancer and Identification of Active Metabolites in This Pathology.

  • Luis Varela-Rodríguez‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2021‎

Rhus trilobata (RHTR) is a medicinal plant with cytotoxic activity in different cancer cell lines. However, the active compounds in this plant against ovarian cancer are unknown. In this study, we aimed to evaluate the antineoplastic activity of RHTR and identify its active metabolites against ovarian cancer. The aqueous extract (AE) and an active fraction (AF02) purified on C18-cartridges/ethyl acetate decreased the viability of SKOV-3 cells at 50 and 38 μg/mL, respectively, compared with CHO-K1 (>50 μg/mL) in MTT assays and generated changes in the cell morphology with apoptosis induction in Hemacolor® and TUNEL assays (p ≤ 0.05, ANOVA). The metabolite profile of AF02 showed a higher abundance of flavonoid and lipid compounds compared with AE by UPLC-MSE. Gallic acid and myricetin were the most active compounds in RHTR against SKOV-3 cells at 50 and 166 μg/mL, respectively (p ≤ 0.05, ANOVA). Antineoplastic studies in Nu/Nu female mice with subcutaneous SKOV-3 cells xenotransplant revealed that 200 mg/kg/i.p. of AE and AF02 inhibited ovarian tumor lesions from 37.6% to 49% after 28 days (p ≤ 0.05, ANOVA). In conclusion, RHTR has antineoplastic activity against ovarian cancer through a cytostatic effect related to gallic acid and myricetin. Therefore, RHTR could be a complementary treatment for this pathology.


Effect of lithium chloride and antineoplastic drugs on survival and cell cycle of androgen-dependent prostate cancer LNCap cells.

  • Vajihe Azimian-Zavareh‎ et al.
  • Indian journal of pharmacology‎
  • 2012‎

Glycogen synthase kinase-3β (GSK-3β) has been reported to be required for androgen receptor (AR) activity. This study sought to determine the usefulness of lithium chloride (LiCl) as a highly selective inhibitor of GSK-3β to increase the sensitivity of LNCap cells to doxorubicin (Dox), etoposide (Eto), and vinblastine (Vin) drugs.


Antineoplastic effects of selective CDK9 inhibition with atuveciclib on cancer stem-like cells in triple-negative breast cancer.

  • Daphne Brisard‎ et al.
  • Oncotarget‎
  • 2018‎

Treatment options for triple-negative breast cancer (TNBC) are limited due to the lack of efficient targeted therapies, frequently resulting in recurrence and metastatic disease. Accumulating evidence suggests that a small population of cancer stem-like cells (CSLCs) is responsible for tumor recurrence and therapy resistance. Here we investigated the role of cyclin-dependent kinase 9 (CDK9) in TNBC. Using The Cancer Genome Atlas (TCGA) data we found high-CDK9 expression correlates with worse overall survival in TNBC patients. Pharmacologic inhibition of CDK9 with atuveciclib in high-CDK9 expressing TNBC cell lines reduced expression of CDK9 targets MYC and MCL1 and decreased cell proliferation and survival. Importantly, atuveciclib inhibited the growth of mammospheres and reduced the percentage of CD24low/CD44high cells, indicating disruption of breast CSLCs (BCSLCs). Furthermore, atuveciclib impaired 3D invasion of tumorspheres suggesting inhibition of both invasion and metastatic potential. Finally, atuveciclib enhanced the antineoplastic effects of Cisplatin and promoted inhibitory effects on BCSLCs grown as mammospheres. Together, these findings suggest CDK9 as a potential therapeutic target in aggressive forms of CDK9-high TNBC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: