Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

The anti-angiogenic factor PEDF is present in the human heart and is regulated by anoxia in cardiac myocytes and fibroblasts.

  • Kathrin Rychli‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2010‎

Cardiac diseases such as myocardial infarction and heart failure are among the leading causes of death in western societies. Therapeutic angiogenesis has been suggested as a concept to combat these diseases. The biology of angiogenic factors expressed in the heart such as vascular endothelial growth factor (VEGF) is well studied, whereas data on anti-angiogenic mediators in the heart are scarce. Here we study the expression of the anti-angiogenic factor pigment epithelium-derived factor (PEDF) in the human heart and in human cardiac cells. PEDF expression could be detected in human cardiac tissue on the protein and mRNA levels. PEDF mRNA levels were significantly lower in explanted human ischemic hearts as compared to healthy hearts. Our in vitro experiments showed that human adult cardiac myocytes and fibroblasts constitutively secrete PEDF. In addition to anoxic conditions, cobalt chloride, 2,2'dipyridyl and dimethoxally glycine, which stabilize hypoxia inducible factor-alpha decreased PEDF expression. Furthermore we show that PEDF inhibits VEGF-induced sprouting. We have identified PEDF in healthy and ischemic human hearts and we show that PEDF expression is down-regulated by low oxygen levels. Therefore, we suggest a role for PEDF in the regulation of angiogenesis in the heart and propose PEDF as a possible therapeutic target in heart disease.


Endogenous hormone 2-methoxyestradiol suppresses venous hypertension-induced angiogenesis through up- and down-regulating p53 and id-1.

  • Xiang Zou‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Brain arteriovenous malformations (AVMs) which associate with angiogenesis due to local hypertension, chronic cerebral ischaemia and tissue hypoxia usually lead to haemorrhage, however, the therapeutic medicine for the disease is still lacking. 2-methoxyestradiol (2-ME) has been shown effective in the anti-angiogenic treatment. This study was conducted to examine whether and how 2-ME could improve the vascular malformations. Intracranial venous hypertension (VH) model produced in adult male Sprague-Dawley rats and culture of human umbilical vein endothelial cells (HUVECs) at the anoxia condition were used to induce in vivo and in vitro angiogenesis, respectively. Lentiviral vectors of ID-1 and p53 genes and of their siRNA were intracranially injected into rats and transfected into HUVECs to overexpress and down-regulate these molecules. 2-ME treatment not only reduced the in vivo progression of brain tissue angiogenesis in the intracranial VH rats and the in vitro increases in microvasculature formation, cellular migration and HIF-1α expression induced by anoxia in HUVECs but also reversed the up-regulation of ID-1 and down-regulation of p53 in both the in vivo and in vitro angiogenesis models. All of the anti-angiogenesis effects of 2-ME observed in VH rats and anoxic HUVECs were abrogated by ID-1 overexpression and p53 knockdown. Our data collectively suggest that 2-ME treatment inhibits hypoxia/anoxia-induced angiogenesis dependently on ID-1 down-regulation and p53 up-regulation, providing a potential alternative medical treatment for un-ruptured AVM patients.


Reduction in hypoxia-reoxygenation-induced myocardial mitochondrial damage with exogenous methane.

  • Dávid Kurszán Jász‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Albeit previous experiments suggest potential anti-inflammatory effect of exogenous methane (CH4 ) in various organs, the mechanism of its bioactivity is not entirely understood. We aimed to investigate the potential mitochondrial effects and the underlying mechanisms of CH4 in rat cardiomyocytes and mitochondria under simulated ischaemia/reperfusion (sI/R) conditions. Three-day-old cultured cardiomyocytes were treated with 2.2% CH4 -artificial air mixture during 2-hour-long reoxygenation following 4-hour-long anoxia (sI/R and sI/R + CH4 , n = 6-6), with normoxic groups serving as controls (SH and SH + CH4 ; n = 6-6). Mitochondrial functions were investigated with high-resolution respirometry, and mitochondrial membrane injury was detected by cytochrome c release and apoptotic characteristics by using TUNEL staining. CH4 admixture had no effect on complex II (CII)-linked respiration under normoxia but significantly decreased the complex I (CI)-linked oxygen consumption. Nevertheless, addition of CH4 in the sI/R + CH4 group significantly reduced the respiratory activity of CII in contrast to CI and the CH4 treatment diminished mitochondrial H2 O2 production. Substrate-induced changes to membrane potential were partially preserved by CH4 , and additionally, cytochrome c release and apoptosis of cardiomyocytes were reduced in the CH4 -treated group. In conclusion, the addition of CH4 decreases mitochondrial ROS generation via blockade of electron transport at CI and reduces anoxia-reoxygenation-induced mitochondrial dysfunction and cardiomyocyte injury in vitro.


Hypoxic bone marrow mesenchymal cell-extracellular vesicles containing miR-328-3p promote lung cancer progression via the NF2-mediated Hippo axis.

  • Xi Liu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Lung cancer is the most aggressive tumour afflicting patients on a global scale. Extracellular vesicle (EV)-delivered microRNAs (miRs) have been reported to play critical roles in cancer development. The current study aimed to investigate the role of hypoxic bone marrow mesenchymal cell (BMSC)-derived EVs containing miR-328-3p in lung cancer. miR-328-3p expression was determined in a set of lung cancer tissues by RT-qPCR. BMSCs were infected with lentivirus-mediated miR-328-3p knock-down and then cultured in normoxic or hypoxic conditions, followed by isolation of EVs. Following ectopic expression and depletion experiments in lung cancer cells, the biological functions of miR-328-3p were analysed using CCK-8 assay, flow cytometry and Transwell assay. Xenograft in nude mice was performed to test the in vivo effects of miR-328-3p delivered by hypoxic BMSC-derived EVs on tumour growth of lung cancer. Finally, the expression of circulating miR-328-3p was detected in the serum of lung cancer patients. miR-328-3p was highly expressed in EVs derived from hypoxic BMSCs. miR-328-3p was delivered to lung cancer cells by hypoxic BMSC-derived EVs, thereby promoting lung cancer cell proliferation, invasion, migration and epithelial-mesenchymal transition. miR-328-3p targeted NF2 to inactivate the Hippo pathway. Moreover, EV-delivered miR-328-3p increased tumour growth in vivo. Additionally, circulating miR-328-3p was bioactive in the serum of lung cancer patients. Taken together, our results demonstrated that hypoxic BMSC-derived EVs could deliver miR-328-3p to lung cancer cells and that miR-328-3p targets the NF2 gene, thereby inhibiting the Hippo pathway to ultimately promote the occurrence and progression of lung cancer.


Acidic pre-conditioning suppresses apoptosis and increases expression of Bcl-xL in coronary endothelial cells under simulated ischaemia.

  • S Kumar‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2008‎

Ischaemic pre-conditioning has a powerful protective potential against ischaemia-induced cell death, and acidosis is an important feature of ischaemia and can lead to apoptosis. Here we tested whether pre-conditioning with acidosis, that is, acidic pre-conditioning (APC), may protect coronary endothelial cells (EC) against apoptosis induced by simulated ischaemia. For pre-conditioning, EC were exposed fo 40 min. to acidosis (pH 6.4) followed by a 14-hrs recovery period (pH 7.4) and finally treated for 2 hrs with simulated ischaemia (glucose-free anoxia at pH 6.4). Cells undergoing apoptosis were visualized by chromatin staining or by determination of caspase-3 activity Simulated ischaemia in untreated EC increased caspase-3 activity and the number of apoptotic cell (31.3 +/- 1.3%versus 3.9 +/- 0.6% in control). APC significantly reduced the rate of apoptosis (14.2 +/- 1.3%) and caspase-3 activity. Western blot analysis exploring the under lying mechanism leading to this protection revealed suppression of the endoplasmic reticulum- (reduced cleavage of caspase-12) and mitochondria-mediated (reduced cytochrome C release) pathways of apoptosis. These effects were associated with an over-expression of the anti-apoptotic protein Bcl-xL 14 hrs after APC, whereas no effect on the expression of Bcl-2, Bax, Bak, procaspase-12, reticulum-localized chaperones (GRP78, calreticulin), HSP70, HSP32 and HSP27 could be detected. Knock-down of Bcl-xL by siRNA-treatment prevented the protective effect of APC. In conclusion, short acidic pre-treatment can protect EC against ischaemic apoptosis. The mechanism of this protection consists of suppression of the endoplasmic reticulum- and mitochondria-mediated pathways. Over-expression of the anti apoptotic protein Bcl-xL is responsible for the increased resistance to apoptosis during ischaemic insult.


Importance of bicarbonate transport for ischaemia-induced apoptosis of coronary endothelial cells.

  • Sanjeev Kumar‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2007‎

Bicarbonate transport (BT) has been previously shown to participate in apoptosis induced by various stress factors. However, the precise role of BT in ischaemia-induced apoptosis is still unknown. To investigate this subject, rat coronary endothelial cells (EC) were exposed to simulated ischaemia (glucose free anoxia at Ph 6.4) for 2 hrs and cells undergoing apoptosis were visualized by nuclear staining or by determination of cas-pase- 3 activity. To inhibit BT, EC were either treated with the inhibitor of BT 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS, 300 mumol/l) or exposed to ischaemia in bicarbonate free, 4-(2-hydroxyethyl)-I-piperazi-neethanesulphonic acid (HEPES)-buffered medium. Simulated ischaemia in bicarbonate-buffered medium (Bic) increased caspase-3 activity and the number of apoptotic cell (23.7 + 1.4%versus 5.1 + 1.2% in control). Omission of bicarbonate during ischaemia further significantly increased caspase-3 activity and the number of apoptotic cells (36.7 1.7%). Similar proapoptotic effect was produced by DIDS treatment during ischaemia in Bic, whereas DIDS had no effect when applied in bicarbonate-free, HEPES-buffered medium (Hep). Inhibition of BT was without influence on cytosolic acidification during ischaemia and slightly reduced cytosolic Ca(2+) accumulation. Initial characterization of the underlying mechanism leading to apoptosis induced by BT inhibition revealed activation of the mitochondrial pathway of apoptosis, i.e., increase of cytochrome C release, depolarization of mitochondria and translocation of Bax protein to mitochondria. In contrast, no activation of death receptor-dependent pathway (caspase-8 cleavage) and endoplasmic reticulum- dependent pathway (caspase-12 cleavage) was detected. In conclusion, BT plays an important role in ischaemia-induced apoptosis of coronary EC by suppression of mitochondria-dependent apoptotic pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: