2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 66 papers

The diversity and evolution of Wolbachia ankyrin repeat domain genes.

  • Stefanos Siozios‎ et al.
  • PloS one‎
  • 2013‎

Ankyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions. We present a comparative evolutionary analysis of the wMel-related ankyrin repeat domain-encoding genes present in different Drosophila-Wolbachia associations. Our results show that the ankyrin repeat domain-encoding genes change in size by expansion and contraction mediated by short directly repeated sequences. We provide examples of intra-genic recombination events and show that these genes are likely to be horizontally transferred between strains with the aid of bacteriophages. These results confirm previous findings that the Wolbachia genomes are evolutionary mosaics and illustrate the potential that these bacteria have to generate diversity in proteins potentially involved in the symbiotic interactions.


Notch ankyrin repeat domain variation influences leukemogenesis and Myc transactivation.

  • Jon C Aster‎ et al.
  • PloS one‎
  • 2011‎

The functional interchangeability of mammalian Notch receptors (Notch1-4) in normal and pathophysiologic contexts such as cancer is unsettled. We used complementary in vivo, cell-based and structural analyses to compare the abilities of activated Notch1-4 to support T cell development, induce T cell acute lymphoblastic leukemia/lymphoma (T-ALL), and maintain T-ALL cell growth and survival.


Large Ankyrin repeat proteins are formed with similar and energetically favorable units.

  • Ezequiel A Galpern‎ et al.
  • PloS one‎
  • 2020‎

Ankyrin containing proteins are one of the most abundant repeat protein families present in all extant organisms. They are made with tandem copies of similar amino acid stretches that fold into elongated architectures. Here, we built and curated a dataset of 200 thousand proteins that contain 1.2 million Ankyrin regions and characterize the abundance, structure and energetics of the repetitive regions in natural proteins. We found that there is a continuous roughly exponential variety of array lengths with an exceptional frequency at 24 repeats. We described that individual repeats are seldom interrupted with long insertions and accept few deletions, in line with the known tertiary structures. We found that longer arrays are made up of repeats that are more similar to each other than shorter arrays, and display more favourable folding energy, hinting at their evolutionary origin. The array distributions show that there is a physical upper limit to the size of an array of repeats of about 120 copies, consistent with the limit found in nature. The identity patterns within the arrays suggest that they may have originated by sequential copies of more than one Ankyrin unit.


Overexpression of NOTCH-regulated Ankyrin Repeat Protein is associated with papillary thyroid carcinoma progression.

  • Mingdi Zhang‎ et al.
  • PloS one‎
  • 2017‎

Papillary thyroid cancer (PTC) is one of the endocrine cancers with high clinical and genetic heterogeneity. NOTCH signaling and its downstream NOTCH-Regulated Ankyrin Repeat Protein (NRARP) have been implicated in oncogenesis of many cancers, but the roles in PTCs are less studied. In this study, we show that NRARP is frequently over-expressed in thyroid carcinoma. The over-activation of NRARP is highly and positively correlated with NOTCH genes. Moreover, we find that the expression of NRARP is highly associated with several epithelial mesenchymal transition (EMT) markers and contributes to poor survival outcomes. Therefore, these results indicate that NRARP is an important clinical biomarker in thyroid carcinoma and it promotes EMT induction as well as the progression of PTCs via NOTCH signaling activation.


Designed ankyrin repeat proteins: a new approach to mimic complex antigens for diagnostic purposes?

  • Stefanie Hausammann‎ et al.
  • PloS one‎
  • 2013‎

Inhibitory antibodies directed against coagulation factor VIII (FVIII) can be found in patients with acquired and congenital hemophilia A. Such FVIII-inhibiting antibodies are routinely detected by the functional Bethesda Assay. However, this assay has a low sensitivity and shows a high inter-laboratory variability. Another method to detect antibodies recognizing FVIII is ELISA, but this test does not allow the distinction between inhibitory and non-inhibitory antibodies. Therefore, we aimed at replacing the intricate antigen FVIII by Designed Ankyrin Repeat Proteins (DARPins) mimicking the epitopes of FVIII inhibitors. As a model we used the well-described inhibitory human monoclonal anti-FVIII antibody, Bo2C11, for the selection on DARPin libraries. Two DARPins were selected binding to the antigen-binding site of Bo2C11, which mimic thus a functional epitope on FVIII. These DARPins inhibited the binding of the antibody to its antigen and restored FVIII activity as determined in the Bethesda assay. Furthermore, the specific DARPins were able to recognize the target antibody in human plasma and could therefore be used to test for the presence of Bo2C11-like antibodies in a large set of hemophilia A patients. These data suggest, that our approach might be used to isolate epitopes from different sets of anti-FVIII antibodies in order to develop an ELISA-based screening assay allowing the distinction of inhibitory and non-inhibitory anti-FVIII antibodies according to their antibody signatures.


Global analysis of ankyrin repeat domain C3HC4-type RING finger gene family in plants.

  • Xiaowei Yuan‎ et al.
  • PloS one‎
  • 2013‎

Ankyrin repeat (ANK) C3HC4-type RING finger (RF) genes comprise a large family in plants and play important roles in various physiological processes of plant life. In this study, we identified 187 ANK C3HC4-type RF proteins from 29 species with complete genomes and named the ANK C3HC4-type RF proteins the XB3-like proteins because they are structurally related to the rice (Oryza sativa) XB3. A phylogenetic relationship analysis suggested that the XB3-like genes originated from ferns, and the encoded proteins fell into 3 major groups. Among these groups, we found that the spacing between the metal ligand position 6 and 7, and the conserved residues, which was in addition to the metal ligand amino acids, in the C3HC4-type RF were different. Using a wide range of protein structural analyses, protein models were established, and all XB3-like proteins were found to contain two to seven ANKs and a C3HC4-type RF. The microarray data for the XB3-like genes of Arabidopsis, Oryza sative, Zea mays and Glycine max revealed that the expression of XB3-like genes was in different tissues and during different life stages. The preferential expression of XB3-like genes in specified tissues and the response to phytohormone and abiotic stress treatments of Arabidopsis and Zea mays not only confirmed the microarray analysis data but also demonstrated that the XB3-like proteins play roles in plant growth and development as well as in stress responses. Our data provide a very useful reference for the identification and functional analysis of members of this gene family and also provide a new method for the genome-wide analysis of gene families.


Characterization of zebrafish (Danio rerio) muscle ankyrin repeat proteins reveals their conserved response to endurance exercise.

  • Srdjan Boskovic‎ et al.
  • PloS one‎
  • 2018‎

Muscle proteins with ankyrin repeats (MARPs) ANKRD1 and ANKRD2 are titin-associated proteins with a putative role as transcriptional co-regulators in striated muscle, involved in the cellular response to mechanical, oxidative and metabolic stress. Since many aspects of the biology of MARPs, particularly exact mechanisms of their action, in striated muscle are still elusive, research in this field will benefit from novel animal model system. Here we investigated the MARPs found in zebrafish for protein structure, evolutionary conservation, spatiotemporal expression profiles and response to increased muscle activity. Ankrd1 and Ankrd2 show overall moderate conservation at the protein level, more pronounced in the region of ankyrin repeats, motifs indispensable for their function. The two zebrafish genes, ankrd1a and ankrd1b, counterparts of mammalian ANKRD1/Ankrd1, have different expression profiles during first seven days of development. Mild increase of ankrd1a transcript levels was detected at 72 hpf (1.74±0.24 fold increase relative to 24 hpf time point), while ankrd1b expression was markedly upregulated from 24 hpf onward and peaked at 72 hpf (92.18±36.95 fold increase relative to 24 hpf time point). Spatially, they exhibited non-overlapping expression patterns during skeletal muscle development in trunk (ankrd1a) and tail (ankrd1b) somites. Expression of ankrd2 was barely detectable. Zebrafish MARPs, expressed at a relatively low level in adult striated muscle, were found to be responsive to endurance exercise training consisting of two bouts of 3 hours of forced swimming daily, for five consecutive days. Three hours after the last exercise bout, ankrd1a expression increased in cardiac muscle (6.19±5.05 fold change), while ankrd1b and ankrd2 were upregulated in skeletal muscle (1.97±1.05 and 1.84±0.58 fold change, respectively). This study provides the foundation to establish zebrafish as a novel in vivo model for further investigation of MARPs function in striated muscle.


Cardiac ankyrin repeat protein attenuates cardiac hypertrophy by inhibition of ERK1/2 and TGF-β signaling pathways.

  • Yao Song‎ et al.
  • PloS one‎
  • 2012‎

It has been reported that cardiac ankyrin repeat protein is associated with heart development and diseases. This study is aimed to investigate the role of CARP in heart hypertrophy in vivo.


Diabetes-Related Ankyrin Repeat Protein (DARP/Ankrd23) Modifies Glucose Homeostasis by Modulating AMPK Activity in Skeletal Muscle.

  • Yoshiaki Shimoda‎ et al.
  • PloS one‎
  • 2015‎

Skeletal muscle is the major site for glucose disposal, the impairment of which closely associates with the glucose intolerance in diabetic patients. Diabetes-related ankyrin repeat protein (DARP/Ankrd23) is a member of muscle ankyrin repeat proteins, whose expression is enhanced in the skeletal muscle under diabetic conditions; however, its role in energy metabolism remains poorly understood. Here we report a novel role of DARP in the regulation of glucose homeostasis through modulating AMP-activated protein kinase (AMPK) activity. DARP is highly preferentially expressed in skeletal muscle, and its expression was substantially upregulated during myotube differentiation of C2C12 myoblasts. Interestingly, DARP-/- mice demonstrated better glucose tolerance despite similar body weight, while their insulin sensitivity did not differ from that in wildtype mice. We found that phosphorylation of AMPK, which mediates insulin-independent glucose uptake, in skeletal muscle was significantly enhanced in DARP-/- mice compared to that in wildtype mice. Gene silencing of DARP in C2C12 myotubes enhanced AMPK phosphorylation, whereas overexpression of DARP in C2C12 myoblasts reduced it. Moreover, DARP-silencing increased glucose uptake and oxidation in myotubes, which was abrogated by the treatment with AICAR, an AMPK activator. Of note, improved glucose tolerance in DARP-/- mice was abolished when mice were treated with AICAR. Mechanistically, gene silencing of DARP enhanced protein expression of LKB1 that is a major upstream kinase for AMPK in myotubes in vitro and the skeletal muscle in vivo. Together with the altered expression under diabetic conditions, our data strongly suggest that DARP plays an important role in the regulation of glucose homeostasis under physiological and pathological conditions, and thus DARP is a new therapeutic target for the treatment of diabetes mellitus.


The ankyrin repeat domain of the TRPA protein painless is important for thermal nociception but not mechanical nociception.

  • Richard Y Hwang‎ et al.
  • PloS one‎
  • 2012‎

The Drosophila TRPA channel Painless is required for the function of polymodal nociceptors which detect noxious heat and noxious mechanical stimuli. These functions of Painless are reminiscent of mammalian TRPA channels that have also been implicated in thermal and mechanical nociception. A popular hypothesis to explain the mechanosensory functions of certain TRP channels proposes that a string of ankyrin repeats at the amino termini of these channels acts as an intracellular spring that senses force. Here, we describe the identification of two previously unknown Painless protein isoforms which have fewer ankyrin repeats than the canonical Painless protein. We show that one of these Painless isoforms, that essentially lacks ankyrin repeats, is sufficient to rescue mechanical nociception phenotypes of painless mutant animals but does not rescue thermal nociception phenotypes. In contrast, canonical Painless, which contains Ankyrin repeats, is sufficient to largely rescue thermal nociception but is not capable of rescuing mechanical nociception. Thus, we propose that in the case of Painless, ankryin repeats are important for thermal nociception but not for mechanical nociception.


Multiple Orientia tsutsugamushi ankyrin repeat proteins interact with SCF1 ubiquitin ligase complex and eukaryotic elongation factor 1 α.

  • Chan-Ki Min‎ et al.
  • PloS one‎
  • 2014‎

Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular bacterium. Previously, a large number of genes that encode proteins containing eukaryotic protein-protein interaction motifs such as ankyrin-repeat (Ank) domains were identified in the O. tsutsugamushi genome. However, little is known about the Ank protein function in O. tsutsugamushi.


The Ankyrin Repeat Domain 49 (ANKRD49) Augments Autophagy of Serum-Starved GC-1 Cells through the NF-κB Pathway.

  • Hai-long Wang‎ et al.
  • PloS one‎
  • 2015‎

The ankyrin repeat domain 49 (ANKRD49) is an evolutionarily conserved protein highly expressed in testes. However, the function of ANKRD49 in spermatogenesis is unknown. In this study, we found that ANKRD49 resides primarily in nucleus of spermatogonia, spermatocytes and round spermatids. ANKRD49 overexpression augments starvation-induced autophagy in male germ GC-1 cells whereas shRNA knockdown of ANKRD49 attenuates the autophagy. Inhibition of NF-κB pathway by its inhibitors or p65 siRNA prevents the ANKRD49-dependent autophagy augmentation, demonstrating that ANKRD49 enhances autophagy via NF-κB pathway. Our findings suggest that ANKRD49 plays an important role in spermatogenesis via promotion of autophagy-dependent survival.


Gonadotropin regulation of ankyrin-repeat and SOCS-box protein 9 (ASB9) in ovarian follicles and identification of binding partners.

  • Gabriel Benoit‎ et al.
  • PloS one‎
  • 2019‎

Ankyrin-repeat and SOCS-box protein 9 (ASB9) is a member of the large SOCS-box containing proteins family and acts as the specific substrate recognition component of E3 ubiquitin ligases in the process of ubiquitination and proteasomal degradation. We previously identified ASB9 as a differentially expressed gene in granulosa cells (GC) of bovine ovulatory follicles. This study aimed to further investigate ASB9 mRNA and protein regulation, identify binding partners in GC of bovine ovulatory follicles, and study its function. GC were obtained from small follicles (SF: 2-4 mm), dominant follicles at day 5 of the estrous cycle (DF), and ovulatory follicles, 24 hours following hCG injection (OF). Analyses by RT-PCR showed a 104-fold greater expression of ASB9 in GC of OF than in DF. Steady-state levels of ASB9 in follicular walls (granulosa and theca cells) analyzed at 0, 6, 12, 18 and 24 hours after hCG injection showed a significant induction of ASB9 expression at 12 and 18 hours, reaching a maximum induction of 10.2-fold at 24 hours post-hCG as compared to 0 hour. These results were confirmed in western blot analysis showing strongest ASB9 protein amounts in OF. Yeast two-hybrid screening of OF-cDNAs library resulted in the identification of 10 potential ASB9 binding partners in GC but no interaction was found between ASB9 and creatine kinase B (CKB) in these GC. Functional studies using CRISPR-Cas9 approach revealed that ASB9 inhibition led to increased GC proliferation and modulation of target genes expression. Overall, these results support a physiologically relevant role of ASB9 in the ovulatory follicle by targeting specific proteins likely for degradation, contributing to reduced GC proliferation, and could be involved in the final GC differentiation into luteal cells.


The GIY-YIG Type Endonuclease Ankyrin Repeat and LEM Domain-Containing Protein 1 (ANKLE1) Is Dispensable for Mouse Hematopoiesis.

  • Juliane Braun‎ et al.
  • PloS one‎
  • 2016‎

Ankyrin repeat and LEM-domain containing protein 1 (ANKLE1) is a GIY-YIG endonuclease with unknown functions, mainly expressed in mouse hematopoietic tissues. To test its potential role in hematopoiesis we generated Ankle1-deficient mice. Ankle1Δ/Δ mice are viable without any detectable phenotype in hematopoiesis. Neither hematopoietic progenitor cells, myeloid and lymphoid progenitors, nor B and T cell development in bone marrow, spleen and thymus, are affected in Ankle1Δ/Δ-mice. Similarly embryonic stress erythropoiesis in liver and adult erythropoiesis in bone marrow and spleen appear normal. To test whether ANKLE1, like the only other known GIY-YIG endonuclease in mammals, SLX1, may contribute to Holliday junction resolution during DNA repair, Ankle1-deficient cells were exposed to various DNA-damage inducing agents. However, lack of Ankle1 did not affect cell viability and, unlike depletion of Slx1, Ankle1-deficiency did not increase sister chromatid exchange in Bloom helicase-depleted cells. Altogether, we show that lack of Ankle1 does neither affect mouse hematopoiesis nor DNA damage repair in mouse embryonic fibroblasts, indicating a redundant or non-essential function of ANKLE1 in mouse.


Structural model for the interaction of a designed Ankyrin Repeat Protein with the human epidermal growth factor receptor 2.

  • V Chandana Epa‎ et al.
  • PloS one‎
  • 2013‎

Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2). HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84-1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions.


The muscle ankyrin repeat proteins CARP, Ankrd2, and DARP are not essential for normal cardiac development and function at basal conditions and in response to pressure overload.

  • Marie-Louise Bang‎ et al.
  • PloS one‎
  • 2014‎

Ankrd1/CARP, Ankrd2/Arpp, and Ankrd23/DARP belong to a family of stress inducible ankyrin repeat proteins expressed in striated muscle (MARPs). The MARPs are homologous in structure and localized in the nucleus where they negatively regulate gene expression as well as in the sarcomeric I-band, where they are thought to be involved in mechanosensing. Together with their strong induction during cardiac disease and the identification of causative Ankrd1 gene mutations in cardiomyopathy patients, this suggests their important roles in cardiac development, function, and disease. To determine the functional role of MARPs in vivo, we studied knockout (KO) mice of each of the three family members. Single KO mice were viable and had no apparent cardiac phenotype. We therefore hypothesized that the three highly homologous MARP proteins may have redundant functions in the heart and studied double and triple MARP KO mice. Unexpectedly, MARP triple KO mice were viable and had normal cardiac function both at basal levels and in response to mechanical pressure overload induced by transverse aortic constriction as assessed by echocardiography and hemodynamic studies. Thus, CARP, Ankrd2, and DARP are not essential for normal cardiac development and function at basal conditions and in response to mechanical pressure overload.


Tanscriptomic Study of the Soybean-Fusarium virguliforme Interaction Revealed a Novel Ankyrin-Repeat Containing Defense Gene, Expression of Whose during Infection Led to Enhanced Resistance to the Fungal Pathogen in Transgenic Soybean Plants.

  • Micheline N Ngaki‎ et al.
  • PloS one‎
  • 2016‎

Fusarium virguliforme causes the serious disease sudden death syndrome (SDS) in soybean. Host resistance to this pathogen is partial and is encoded by a large number of quantitative trait loci, each conditioning small effects. Breeding SDS resistance is therefore challenging and identification of single-gene encoded novel resistance mechanisms is becoming a priority to fight this devastating this fungal pathogen. In this transcriptomic study we identified a few putative soybean defense genes, expression of which is suppressed during F. virguliforme infection. The F. virguliforme infection-suppressed genes were broadly classified into four major classes. The steady state transcript levels of many of these genes were suppressed to undetectable levels immediately following F. virguliforme infection. One of these classes contains two novel genes encoding ankyrin repeat-containing proteins. Expression of one of these genes, GmARP1, during F. virguliforme infection enhances SDS resistance among the transgenic soybean plants. Our data suggest that GmARP1 is a novel defense gene and the pathogen presumably suppress its expression to establish compatible interaction.


StaRProtein, a web server for prediction of the stability of repeat proteins.

  • Yongtao Xu‎ et al.
  • PloS one‎
  • 2015‎

Repeat proteins have become increasingly important due to their capability to bind to almost any proteins and the potential as alternative therapy to monoclonal antibodies. In the past decade repeat proteins have been designed to mediate specific protein-protein interactions. The tetratricopeptide and ankyrin repeat proteins are two classes of helical repeat proteins that form different binding pockets to accommodate various partners. It is important to understand the factors that define folding and stability of repeat proteins in order to prioritize the most stable designed repeat proteins to further explore their potential binding affinities. Here we developed distance-dependant statistical potentials using two classes of alpha-helical repeat proteins, tetratricopeptide and ankyrin repeat proteins respectively, and evaluated their efficiency in predicting the stability of repeat proteins. We demonstrated that the repeat-specific statistical potentials based on these two classes of repeat proteins showed paramount accuracy compared with non-specific statistical potentials in: 1) discriminate correct vs. incorrect models 2) rank the stability of designed repeat proteins. In particular, the statistical scores correlate closely with the equilibrium unfolding free energies of repeat proteins and therefore would serve as a novel tool in quickly prioritizing the designed repeat proteins with high stability. StaRProtein web server was developed for predicting the stability of repeat proteins.


LRR conservation mapping to predict functional sites within protein leucine-rich repeat domains.

  • Laura Helft‎ et al.
  • PloS one‎
  • 2011‎

Computational prediction of protein functional sites can be a critical first step for analysis of large or complex proteins. Contemporary methods often require several homologous sequences and/or a known protein structure, but these resources are not available for many proteins. Leucine-rich repeats (LRRs) are ligand interaction domains found in numerous proteins across all taxonomic kingdoms, including immune system receptors in plants and animals. We devised Repeat Conservation Mapping (RCM), a computational method that predicts functional sites of LRR domains. RCM utilizes two or more homologous sequences and a generic representation of the LRR structure to identify conserved or diversified patches of amino acids on the predicted surface of the LRR. RCM was validated using solved LRR+ligand structures from multiple taxa, identifying ligand interaction sites. RCM was then used for de novo dissection of two plant microbe-associated molecular pattern (MAMP) receptors, EF-TU RECEPTOR (EFR) and FLAGELLIN-SENSING 2 (FLS2). In vivo testing of Arabidopsis thaliana EFR and FLS2 receptors mutagenized at sites identified by RCM demonstrated previously unknown functional sites. The RCM predictions for EFR, FLS2 and a third plant LRR protein, PGIP, compared favorably to predictions from ODA (optimal docking area), Consurf, and PAML (positive selection) analyses, but RCM also made valid functional site predictions not available from these other bioinformatic approaches. RCM analyses can be conducted with any LRR-containing proteins at www.plantpath.wisc.edu/RCM, and the approach should be modifiable for use with other types of repeat protein domains.


In silico identification of carboxylate clamp type tetratricopeptide repeat proteins in Arabidopsis and rice as putative co-chaperones of Hsp90/Hsp70.

  • Bishun D Prasad‎ et al.
  • PloS one‎
  • 2010‎

The essential eukaryotic molecular chaperone Hsp90 operates with the help of different co-chaperones, which regulate its ATPase activity and serve as adaptors to recruit client proteins and other molecular chaperones, such as Hsp70, to the Hsp90 complex. Several Hsp90 and Hsp70 co-chaperones contain the tetratricopeptide repeat (TPR) domain, which interacts with the highly conserved EEVD motif at the C-terminal ends of Hsp90 and Hsp70. The acidic side chains in EEVD interact with a subset of basic residues in the TPR binding pocket called a 'carboxylate clamp'. Since the carboxylate clamp residues are conserved in the TPR domains of known Hsp90/Hsp70 co-chaperones, we carried out an in silico search for TPR proteins in Arabidopsis and rice comprising of at least one three-motif TPR domain with conserved amino acid residues required for Hsp90/Hsp70 binding. This approach identified in Arabidopsis a total of 36 carboxylate clamp (CC)-TPR proteins, including 24 novel proteins, with potential to interact with Hsp90/Hsp70. The newly identified CC-TPR proteins in Arabidopsis and rice contain additional protein domains such as ankyrin, SET, octicosapeptide/Phox/Bem1p (Phox/PB1), DnaJ-like, thioredoxin, FBD and F-box, and protein kinase and U-box, indicating varied functions for these proteins. To provide proof-of-concept of the newly identified CC-TPR proteins for interaction with Hsp90, we demonstrated interaction of AtTPR1 and AtTPR2 with AtHsp90 in yeast two-hybrid and in vitro pull down assays. These findings indicate that the in silico approach used here successfully identified in a genome-wide context CC-TPR proteins with potential to interact with Hsp90/Hsp70, and further suggest that the Hsp90/Hsp70 system relies on TPR co-chaperones more than it was previously realized.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: