Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Insights into Structure-Activity Relationships of 3-Arylhydrazonoindolin-2-One Derivatives for Their Multitarget Activity on β-Amyloid Aggregation and Neurotoxicity.

  • Rosa Purgatorio‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Despite the controversial outcomes of clinical trials executed so far, the prevention of β-amyloid (Aβ) deposition and neurotoxicity by small molecule inhibitors of Aβ aggregation remains a target intensively pursued in the search of effective drugs for treating Alzheimer’s disease (AD) and related neurodegeneration syndromes. As a continuation of previous studies, a series of new 3-(2-arylhydrazono)indolin-2-one derivatives was synthesized and assayed, investigating the effects of substitutions on both the indole core and arylhydrazone moiety. Compared with the reference compound 1, we disclosed equipotent derivatives bearing alkyl substituents at the indole nitrogen, and fairly tolerated bioisosteric replacements at the arylhydrazone moiety. For most of the investigated compounds, the inhibition of Aβ40 aggregation (expressed as pIC50) was found to be correlated with lipophilicity, as assessed by a reversed-phase HPLC method, through a bilinear relationship. The N¹-cyclopropyl derivative 28 was tested in cell-based assays of Aβ42 oligomer toxicity and oxidative stress induced by hydrogen peroxide, showing significant cytoprotective effects. This study confirmed the versatility of isatin in preparing multitarget small molecules affecting different biochemical pathways involved in AD.


N-Hydroxy-N-Propargylamide Derivatives of Ferulic Acid: Inhibitors of Cholinesterases and Monoamine Oxidases.

  • Óscar M Bautista-Aguilera‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Alzheimer's disease (AD) is a complex disorder characterized by impaired neurotransmission in cholinergic and monoaminergic neurons, which, in combination with the accumulation of misfolded proteins and increased oxidative stress, leads to the typical features of the disease at the biomolecular level. Given the limited therapeutic success of approved drugs, it is imperative to explore rationally supported therapeutic approaches to combat this disease. The search for novel scaffolds that bind to different receptors and inhibit AD disease-related enzymes could lead to new therapeutic solutions. Here, we describe N-hydroxy-N-propargylamide hybrids 1-6, which were designed by combining the structures of Contilisant-a multifunctional anti-AD ligand-and ferulic acid, a natural antioxidant with various other biological activities. Among the synthesized compounds, we identified compound 4 as a micromolar inhibitor of hAChE with a potent radical-scavenging capacity comparable to resveratrol and Trolox. In addition, compound 4 chelated copper(II) ions associated with amyloid β pathology, mitochondrial dysfunction, and oxidative stress. The promising in vitro activity combined with favorable drug-like properties and predicted blood-brain barrier permeability make compound 4 a multifunctional ligand that merits further studies at the biochemical and cellular levels.


Homobivalent Lamellarin-Like Schiff Bases: In Vitro Evaluation of Their Cancer Cell Cytotoxicity and Multitargeting Anti-Alzheimer's Disease Potential.

  • Alisa A Nevskaya‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Marine alkaloids belonging to the lamellarins family, which incorporate a 5,6-dihydro-1-phenylpyrrolo[2,1-a]isoquinoline (DHPPIQ) moiety, possess various biological activities, spanning from antiviral and antibiotic activities to cytotoxicity against tumor cells and the reversal of multidrug resistance. Expanding a series of previously reported imino adducts of DHPPIQ 2-carbaldehyde, novel aliphatic and aromatic Schiff bases were synthesized and evaluated herein for their cytotoxicity in five diverse tumor cell lines. Most of the newly synthesized compounds were found noncytotoxic in the low micromolar range (<30 μM). Based on a Multi-fingerprint Similarity Search aLgorithm (MuSSeL), mainly conceived for making protein drug target prediction, some DHPPIQ derivatives, especially bis-DHPPIQ Schiff bases linked by a phenylene bridge, were prioritized as potential hits addressing Alzheimer's disease-related target proteins, such as cholinesterases (ChEs) and monoamine oxidases (MAOs). In agreement with MuSSeL predictions, homobivalent para-phenylene DHPPIQ Schiff base 14 exhibited a noncompetitive/mixed inhibition of human acetylcholinesterase (AChE) with Ki in the low micromolar range (4.69 μM). Interestingly, besides a certain inhibition of MAO A (50% inhibition of the cell population growth (IC50) = 12 μM), the bis-DHPPIQ 14 showed a good inhibitory activity on self-induced β-amyloid (Aβ)1-40 aggregation (IC50 = 13 μM), which resulted 3.5-fold stronger than the respective mono-DHPPIQ Schiff base 9.


Pharmacophore Modeling and 3D-QSAR Study of Indole and Isatin Derivatives as Antiamyloidogenic Agents Targeting Alzheimer's Disease.

  • Rosa Purgatorio‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Thirty-six novel indole-containing compounds, mainly 3-(2-phenylhydrazono) isatins and structurally related 1H-indole-3-carbaldehyde derivatives, were synthesized and assayed as inhibitors of beta amyloid (Aβ) aggregation, a hallmark of pathophysiology of Alzheimer's disease. The newly synthesized molecules spanned their IC50 values from sub- to two-digit micromolar range, bearing further information into structure-activity relationships. Some of the new compounds showed interesting multitarget activity, by inhibiting monoamine oxidases A and B. A cell-based assay in tau overexpressing bacterial cells disclosed a promising additional activity of some derivatives against tau aggregation. The accumulated data of either about ninety published and thirty-six newly synthesized molecules were used to generate a pharmacophore hypothesis of antiamyloidogenic activity exerted in a wide range of potencies, satisfactorily discriminating the 'active' compounds from the 'inactive' (poorly active) ones. An atom-based 3D-QSAR model was also derived for about 80% of 'active' compounds, i.e., those achieving finite IC50 values lower than 100 μM. The 3D-QSAR model (encompassing 4 PLS factors), featuring acceptable predictive statistics either in the training set (n = 45, q2 = 0.596) and in the external test set (n = 14, r2ext = 0.695), usefully complemented the pharmacophore model by identifying the physicochemical features mainly correlated with the Aβ anti-aggregating potency of the indole and isatin derivatives studied herein.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: